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EXECUTIVE SUMMARY 

Transit planning traditionally emphasizes the spatial dimension of accessibility; networks are 
built to bridge locations in the city with the assumption that the provision of spatial connectivity 
is equivalent to providing people with access to their destinations. However, often 
underrepresented in transit analyses, is that travel time, not network proximity, is the 
fundamental unit of influence over people’s travel behavior. It is the time lost in travel that 
drives whether or not people will make trips. Moreover, it is the time lost in travel that provides 
the clearest indicator of the burdens and benefits associated with spatial and temporal dimensions 
of transit provision to the public. Thus, understanding the supply of transit through an analysis of 
end-to-end travel times can help transit planners better explain patterns of ridership and 
implement changes to the network that will better serve its ridership. At the same time, by 
advancing the science of measuring transit accessibility, planners will be able to more accurately 
assess the equality with which their system provides opportunities to different locations and 
demographic sectors within their service area. 

Despite its importance, temporal measures of accessibility are rarely used in transit research or 
practice. This is primarily due to the inherent difficulty and complexity in computing time-based 
accessibility metrics. Estimating origin-to-destination travel times that include the “last mile” of 
travel between the transit network and actual start and endpoints of the trip is technically 
difficult. Not only do such estimations require multimodal network structures, they also require 
detailed knowledge of transit schedules and sophisticated algorithms for calculating shortest 
paths using such inputs. Recently, new standards for sharing transit schedules and geographic 
data, namely the General Transit Feed Specification (GTFS), have prompted innovations in the 
analysis of complex transit travel times using the Esri ArcGIS package with the Network Analyst 
extension. With continued development of the analytical capabilities of network analysis 
functionality, this project aims to assess spatiotemporal dynamics in transit supply in the 
Wasatch Front and the Portland area through an investigation of scheduled travel time 
variability. 

This report consists of a collection of three stand-alone research papers. The first defines a new 
data object, the public transit travel time cube, and demonstrates its use in measuring changes in 
transit provision over time, changes in accessibility to jobs, and the impacts of bicycling on the 
last mile problem.  The second paper consists of a study of temporal mismatch between observed 
travel patterns and the spatiotemporal patterns of transit supply in the Wasatch Front.  The third 
paper expands the food desert literature by measuring temporal fluctuations in food accessibility 
over the course of a typical day, and examining the trends for disparities between socioeconomic 
subgroups. Our findings indicate that time-based measures of transit accessibility provide more 
nuanced understandings of how people are impacted by temporal variability in transit provision.  
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1.1 ABSTRACT 

We put forward a new data object called the public transit travel time cube and demonstrate how 
the cube can be used in the analysis of transit travel time changes over space and time. The travel 
time cube contains the shortest path transit travel time between sets of origins and destinations in 
the city, at all times of day. Once computed, a wide range of investigations become readily 
available to the transit planner or transportation researcher. We conduct three demonstrative 
analysis using travel time cubes for the Wasatch Front, Utah and the Portland region in Oregon. 
Our studies investigate how travel times were impacted by service cuts and expansions in the 
two regions respectively, and the impact this had on jobs accessibility. We also use the travel 
time cube to study the last mile problem, and compute the travel time savings and the stability 
gained by solving the last mile problem with bicycling. The paper concludes with an expanded 
discussion on the merits of the travel time cube and outlines four avenues for continued research.  

1.2 INTRODUCTION 

Accessibility is largely understood as the ease with which people can reach destinations (Hansen, 
1959). Cities in which inhabitants are more able to reach appropriately matched jobs, public 
services, leisure locations, and social contacts likewise produce opportunities for more rapid 
economic growth (Banister and Berechman, 2000), and a higher quality of life for inhabitants 
(Frank, 2000). In urban areas, public transportation plays a critical role in providing low-cost, 
energy-efficient and socially equitable means of accessibility (Pucher, 2004), yet techniques for 
measuring the spatiotemporal patterns of transit-based accessibility remain understudied. A large 
proportion of transit accessibility measures focus on the ease with which people can reach bus 
stops and train stations, rather than investigating how well the transit service provides access to 
actual destinations (Mavoa et al., 2012). Understanding access to destinations necessitates a 
travel time analysis through the transit network, which can be computationally cumbersome and 
requires access to digitized pedestrian and transport networks. When performing travel time 
analyses, it is important to realize that since travel by public transit is subject to the schedule-
based fluctuations in the provision of service, incorporating temporal dynamics into our 
accessibility measures should increase their validity (Farber, Morang and Widener, 2014).  

In this study, we explore the spatiotemporal patterns of public transit accessibility by 
focusing on schedule-based origin-to-destination (OD) travel times and their fluctuations over 
the course of the day. Our approach is based on the development and analysis of public transit 
travel time cubes, a data structure containing the estimated transit-based OD travel time between 
all locations in a region, at all times of day. In this article, we put forward our technique for 
creating the travel time cube and the technical procedures we developed to analyze the vast array 
of computed travel times, and demonstrate the use of travel time cubes in understanding changes 
in spatiotemporal patterns of accessibility through a series of case studies. 
 The rest of the paper is organized as follows: In the next section, we describe the public 
transit travel time cube and the techniques used to create and analyze it. Following this, we 
present three case studies that highlight the use of travel time cubes in the comparison of 
spatiotemporal patterns of accessibility. Finally, we conclude the paper with a summary of our 
contributions and ideas for future research. A formal review of the transit accessibility literature 
is purposefully excluded for the sake of brevity. Judicious citations to relevant literature have 
been placed throughout the text in lieu of a formal review, and interested readers may seek 
general reviews of the accessibility literature here (Geurs and Van Wee, 2004; Páez, Scott and 



4 
 

Morency, 2012; Levinson and Krizek, 2005), or more specific papers closely related to transit 
travel time cubes here (Farber, Morang and Widener, 2014; Ritter, 2014; Owen and Levinson, 
2015; Lei and Church, 2010; Lei, Chen and Goulias, 2012; Mavoa et al., 2012; O'Sullivan, 
Morrison and Shearer, 2000).  
  

1.3 METHODS 

The public transit travel time cube is a three-dimensional array, 𝑇𝑇 = [𝑡𝑡𝑖𝑖,𝑗𝑗,𝑚𝑚], of estimated transit 
travel times where 𝑖𝑖 and 𝑗𝑗 index locations and 𝑚𝑚 indexes trip departure times. In the case where 𝑖𝑖 
and 𝑗𝑗 are traffic analysis zones (TAZs) or census geography units, and 𝑚𝑚 is computed for all 
minutes of the day, the dimension of the cube is 𝑁𝑁 × 𝑁𝑁 × 𝑀𝑀, where 𝑁𝑁 is the number of zones in 
the region and 𝑀𝑀 is the number of minutes in the day (i.e., 1,440). In this particular case, the 
travel time cube contains the public transit travel time from all origins to all destinations at all 
times of day, and thus represents the latent structure of public transit connectivity in a region.  

In our implementation of the cube, travel times are computed using General Transit Feed 
Specification (GTFS) data, a pedestrian network file, and the Add GTFS to Network Dataset 
toolbox for Esri ArcGIS Network Analyst. Given a set of origins and destinations and a departure 
time, we use the Esri OD Cost Matrix tool to compute the shortest path travel time on the 
multimodal network (pedestrian plus transit) that includes ingress, egress, waiting, transfer and 
in-vehicle travel times. The algorithm returns a matrix of shortest path travel times which may 
include “walk-only” routes if walking is faster than using transit. Custom Python scripts are used 
to iterate matrix computations over the minutes of the day, and to assign concurrent OD Cost 
Matrix estimations to the available processors on a multiple core server running Esri ArcGIS in a 
Windows environment. A full suite of Python scripts and documentation are available from the 
authors upon request. Similar data objects built with tools by Esri and other developers have 
been used elsewhere in the literature to investigate issues of accessibility, social equity and mode 
choice (Lei, Chen and Goulias, 2012; Farber, Morang and Widener, 2014; Owen and Levinson, 
2015)  
 Analysis of the travel time cube is achieved through summarizing and visualizing its 
various cross-sections. For example, holding an origin and a departure time constant, the vector 
𝑇𝑇𝑖𝑖,:,𝑚𝑚 contains the scheduled travel time from origin 𝑖𝑖 to all destinations provided a trip start time, 
𝑚𝑚. Similarly, the vector 𝑇𝑇:,𝑗𝑗,𝑚𝑚 contains travel times from all origins to a specific destination at a 
particular time of day. Each of these vectors is suitably visualized by mapping them either at 
zones of origin or destination. Alternatively, we can hold an OD pair constant and extract a third 
vector, 𝑇𝑇𝑖𝑖,𝑗𝑗,: which can be plotted as the time series of travel times from 𝑖𝑖 to 𝑗𝑗 over the course of 
the day. Each of these queries can be thought of as a single column or row being extracted from 
the three-dimensional data cube (Figure 1.1), and the mapping and plotting of such vectors 
represents the atomic methods for visualizing the cube. In practice, multiple rows or columns can 
be summarized before visualization. For example, the mean travel time from an origin to all 
destinations over the course of the day is a meaningful measure of the accessibility of a place in a 
transit network, while the standard deviation of the vector 𝑇𝑇𝑖𝑖,𝑗𝑗,: describes the amount of variation 
in travel time between two locations over the course of the day. 
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Figure 1.1 Illustration of the Travel Time Cube and its Atomic Vectors. The Axes Represent Origins (𝑖𝑖), 

Destinations (𝑗𝑗), and Minutes of the Day (𝑚𝑚). Each Location in this Three-Dimensional Matrix Contains a Shortest 
Path Travel Time from 𝑖𝑖 to 𝑗𝑗 at Time 𝑚𝑚. 

 
 While the mean and standard deviation of 𝑇𝑇𝑖𝑖,𝑗𝑗,: are useful summary measures of average 
travel time and travel time variability, respectively, they are not sensitive to the periodicity in the 
time series. This means that OD pairs with vastly different levels of service caused by different 
vehicle headways may have similar means and standard deviations. Figure 1.2 displays such a 
case. As one can observe, the time series for case A is characterized by hourly service throughout 
the daytime, while for B it is characterized by 30-minute service during peak periods and hourly 
service during the middle of the day. Despite these differences, the two time series have similar 
means and standard deviations of travel time. We introduce a measure based on Fourier 
Transforms (FT) in order to capture the dominant frequencies latent to the connectivity between 
each pair of locations in the region. Our method begins by decomposing a time series using the 
Fast Fourier Transform algorithm (Cooley and Tukey, 1965), which produces a distribution of 
frequencies that combine to reproduce the actual time series. We identify the mode of the 
frequency distribution and select all frequencies that appear with at least 75% of the frequency of 
the mode. This “short-list” of dominant frequencies is used to characterize the regularity of 
connectivity between locations. Importantly, we cannot use simple headway calculations from 
the schedule because our OD pairs consist of locations that are connected by multiple routes and 
routes that are composed of transfers. Using our FT-based measure, the differences in 
connectivity between the cases seen in Figure 1.2 are numerically discernible. 
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Figure 1.2 Using Fourier Transforms to Discriminate between OD Pairs with Similar Travel Time Moments but 

Different Latent Frequencies of Connectivity. 
  

1.4 CASE STUDY ONE: COMPARISON OF TRANSIT TRAVEL TIMES 
OVER TIME 

In this case study, we demonstrate how travel time cubes can be used to assess changes in travel 
times associated with changes to the provision of transit supply including network modifications 
(e.g., new routes, deletion of routes, and modification of routes) and level-of-service 
modifications (e.g., operating hours and headways). Such analyses are required to understand 
relationships between transit supply and mode share (Legrain, Buliung and El-Geneidy, 2015) or 
assessing whether social equity objectives are met (Foth, Manaugh and El-Geneidy, 2013). In 
this case, we conduct a retrospective analysis of travel time cubes for TriMet’s services in 
Portland, OR, and UTA’s services in the Wasatch Front, Utah. These two cases are selected 
because of the significant changes made in their networks, with TriMet cutting bus services by 
approximately 10% to accommodate for budget shortfalls following the Great Recession, and the 
UTA investing in both light rail (Trax) and commuter rail (FrontRunner) expansions. To conduct 
this case study, population-weighted census block group centroids form the spatial units in our 
travel time cubes, which are computed over a typical weekday’s 24-hour period in each time 
period for each city. 

Figure 1.3 presents route maps of the two systems at two different time points. These 
simple visualizations of the transit supply are neither useful in communicating overall changes in 
supply or the impact of these changes on travel times. As an alternative, the descriptive summary 
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of the GTFS data found in TABLE 1.1 quickly informs on the scale and types of changes in 
supply. It contains a summary of transit supply in each region, at each point in time (2011 to 
2014 for UTA and 2009 to 2013 for TriMet), as encapsulated in official GTFS packages shared 
with us by the transit agencies. Our summary focuses on typical weekday services, which do 
contain differences to the Saturday and Sunday levels of service.  For UTA, observe that the 
period is marked by a 144% increase in route-kilometers travelled via light rail (+8,210 km) and 
a 103% increase in commuter rail (+3,717 km). This was met by an 11% decline (-10,575 km) in 
bus kilometers travelled.  This type of modal trade-off between operational expenditures during 
times of rail expansion is well documented in the literature (Grengs, 2002), and is subject to 
criticism for unjustly servicing the needs of rail users (typically higher income and White) at the 
expense of bus users elsewhere in the city (typically lower income and racially diverse).  

In the TriMet region, bus route-kilometers travelled was reduced by 10% (-11,374 km). 
At the same time, the increase in other modes is quite small, with no change in commuter rail 
delivery and only a 152-kilometer increase in light rail. So unlike Salt Lake City, the big cuts to 
bus services were not compensated by increased capacity on other modes.  

 
Table 1.1 Numerical Summary of Changes in Service Delivery 

  Wasatch Front  TriMet 

  Bus Light Rail Commuter 
Rail Bus Light Rail Commuter 

Rail 
Number of Stops       
   Time 1 6,415 31 8 7,106 127 5 
   Time 2 6,118 56 16 6,732 159 5 
   Change -297 25 8 -374 32 0 
   Percentage Change -5% 81% 100% -5% 25% 0% 
Number of Routes       
   Time 1 123 3 1 82 6 1 
   Time 2 114 4 1 79 6 1 
   Change -9 1 0 -3 0 0 
   Percentage Change -7% 33% 0% -4% 0% 0% 
Route KMs       
   Time 1 4,959 68 71 2,582 184 25 
   Time 2 3,683 105 144 2,572 194 25 
   Change -1,276 37 73 -10 10 0 
   Percentage Change -26% 54% 103% 0% 5% 0% 
Route KMs travelled       
   Time 1 96,072 5,683 3,594 108,921 19,823 750 
   Time 2 85,497 13,893 7,311 97,547 19,975 750 
   Change -10,575 8,210 3,717 -11,374 152 0 
   Percentage Change -11% 144% 103% -10% 1% 0% 
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Figure 1.3 Cartographic Depiction of Changes in Service Delivery between a) Time Period 1 and b) Time Period 2 
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While numerical and (to a lesser extent) graphical summaries of transit networks are 
helpful in understanding the change in service from infrastructure- and operations-oriented 
points of view, they do very little to convey how these changes have affected travel times or 
accessibility in the region, arguably the most relevant ways to measure the distribution of 
benefits provided by the system. We therefore suggest the use of travel time cubes to summarize 
the impact of the changes on travel times in the region. Figure 1.4A displays the most 
aggregated type of summary measure of travel time cubes, the overall travel time average 
between all destinations in the region. We display this numerically and aggregated over all times 
of day:  

 Overall Average Travel Time = �
∑ 𝑻𝑻𝒊𝒊,𝒋𝒋,𝒎𝒎𝒊𝒊,𝒋𝒋,𝒎𝒎

𝑵𝑵𝟐𝟐𝑴𝑴
�  (1-1) 

 
and disaggregated over the course of the day as time series plots:  
  
 Time Dependent Average Travel Time = �

∑ 𝑻𝑻𝒊𝒊,𝒋𝒋,𝒎𝒎𝒊𝒊,𝒋𝒋

𝑵𝑵𝟐𝟐 , ∀𝒎𝒎�,  (1-2) 
 
for the Wasatch Front (Figure 1.4B) and Portland (Figure 1.4C). These analyses yield some 
rather unique results. First, we can observe that the changes in service provision resulted in a 10-
minute decline in average travel times in the Wasatch Front, and a 3.5-minute increase in 
Portland. Considering that these are averages over all OD pairs and at all times of day, the 
changes are actually quite large overall. The time series plots reveal that travel times in Utah 
were the most improved due to extended evening services and increased services during the 
morning rush. For Portland, the changes in travel times were more evenly distributed by time of 
day.   

To delve deeper into the spatial patterns of travel time changes, we next explore zone-
specific aggregations of the travel time cube and present these as maps. In this example, we hold 
an origin constant to produce the average travel time from that origin to all other destinations in 
the region, over all times of day:  

 Average Travel Time from an Origin = �
∑ 𝑻𝑻𝒊𝒊,𝒋𝒋,𝒎𝒎𝒋𝒋,𝒎𝒎

𝑵𝑵𝑴𝑴
 , ∀𝒊𝒊�,  (1-3) 

 
and we keep that same zone constant as a destination to compute an average travel time from all 
origins to a specific zone:  

 Average Travel Time to a Destination = �
∑ 𝑻𝑻𝒊𝒊,𝒋𝒋,𝒎𝒎𝒊𝒊,𝒎𝒎

𝑵𝑵𝑴𝑴
, ∀𝒋𝒋�.  (1-4) 

 
 
These quantities can be mapped independently, but to determine how they have changed over the 
course of the years we map their percentage differences. So, for each location, we compute the 
percentage change in average travel time to and from that location and present this data in a 
bivariate choropleth map (Figure 1.4D). For the Wasatch Front, we see rather clear spatial 
patterns of travel time changes. Travel times to/from the southern areas were largely improved 
by the addition of commuter rail there. However, large swathes of the inner suburbs of Salt Lake 
City, along the eastern benches of the Wasatch Front and into the West Valley area, experienced 
increases in travel times, with these neighborhoods becoming harder to reach. Notably, the only 
places that became less accessible as an origin and a destination were affluent and touristic 
communities located within canyons heading east into the Wasatch Front. Transit services to 
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these locations are very limited, and the removal or addition of a single bus trip would have large 
ramifications on mean daily travel times to and from these locations. 

The map of travel time changes in Portland (Figure 1.4D) tells a different story. Here, 
while changes overall are smaller, we do see that many places throughout the region experienced 
across-the-board travel time increases, or travel time increases from either the origin or 
destination perspective. The patterns are far less spatially clustered in comparison to the Wasatch 
Front, indicative of an overall reduction in service across the study area.  

In addition to the changes in absolute travel times, we next turn our attention to the 
exploration of travel time fluctuations over the course of the day, and how changes in transit 
supply have impacted travel time variability from one time period to the next. To do this, we 
extract the most typical travel time cycle length for each OD pair using the Fourier Transform 
method described above. We then compute the mean cycle length for each origin in the region, 
and map the changes in average cycle length from one time period to the next. Figure 1.5A 
illustrates these changes cartographically. For the Wasatch Front, a clear pattern of improved 
(i.e., shortened) cycle length is observed along the north/south commuter rail corridors and 
toward the southwestern expanses of the Trax system. However, several corridors within the city 
have experienced decreases in service frequency, as seen in the inset map of the city center, in 
addition to some already inaccessible areas at the southern, western and eastern extremities of 
the region. These patterns loosely correspond to those found in Figure 1.4D, indicating that the 
changes in travel times are related to changes in service frequencies as well as the addition of 
new rail services in the region. 

For Portland, the spatial pattern of increased travel time cycles are linear, with several 
axes corresponding to particular routes that experienced service cuts. On top of this, we do 
however observe large swathes of the city to the west and south of the center that have 
experienced decreases in cycle lengths, indicating a slight preference for suburban commuting 
over inner-city service provision.   
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Figure 1.4 Depictions of Travel Time Changes, a) Numerically, b) By Time of Day for the Wasatch Front, c) By 

Time of Day for Portland, and d) By Change in Average Travel Times to and from All Zones in the City. Negative 
values represent decreases in travel time, while positive values are increases. 
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Figure 1.5 Change in a) Average Travel Time Cycle and b) Jobs Accessibility 
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1.5 CASE STUDY TWO: ASSESSING ACCESS TO JOBS USING 
TRAVEL TIME CUBES 

In this case study, we use the travel time cube to assess how changes in travel times in each 
region impacted access to jobs. Cumulative opportunities measures of access to jobs are widely 
used in the literature to assess the distribution of transit benefits in a region (Foth, Manaugh and 
El-Geneidy, 2013; Páez and Farber, 2012; Sanchez, Shen and Peng, 2004) and to predict travel 
behavior (Owen and Levinson, 2015). Employment counts at the block-group level were 
acquired from the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 
Employment Statistics (LODES) data. A single jobs count file for 2011 was used for both time 
periods in order to control for accessibility differences caused by transit supply dynamics alone. 
At the time of analysis, this was the most recent vintage of the dataset available to the public. 
The LODES dataset has been used extensively over the past few years in accessibility research 
(Horner and Schleith, 2012; Owen and Levinson, 2015), and the paper by Spear (2011) provides 
a thoughtful overview of the pros and cons of its use in many aspects of transport planning in the 
United States, with the major issues including the absence of military jobs and potential 
miscoding of job locations for multiple-location employers. 
 Our accessibility score is computed as a cumulative opportunities measure within a 60-
minute transit travel time buffer. This single threshold is selected for the sake of demonstration, 
while a more thorough analysis of accessibility using travel time cubes should always compare 
multiple thresholds depending on the normative values in the study region or specific population 
focus (Páez, Scott and Morency, 2012; Farber, Morang and Widener, 2014). For each block 
group centroid, we calculate the total number of jobs within a 60-minute journey at each minute 
of the rush-hour period (7-9 a.m.), and then compute an average accessibility score for each zone 
by averaging over the 120 minutes. This score is more sensitive to variabilities in accessibility 
that are introduced by fluctuations in travel times, something that is not captured in single-point-
of-time estimates of accessibility, but which may be very large, depending on the level of transit 
service. To be precise, the accessibility measure for zone 𝑖𝑖 is computed as: 
 

 𝑨𝑨𝒊𝒊 =
∑ 𝒇𝒇�𝑻𝑻𝒊𝒊,𝒋𝒋,𝒎𝒎�𝑬𝑬𝒋𝒋𝒋𝒋,𝒎𝒎

𝑴𝑴
 (1-5) 

 

where 𝐸𝐸𝑗𝑗 is the count of employment in zone 𝑗𝑗, 𝑓𝑓�𝑇𝑇𝑖𝑖,𝑗𝑗,𝑚𝑚� = �1 if 𝑇𝑇𝑖𝑖,𝑗𝑗,𝑚𝑚 ≤ 60 
0 Otherwise

, and all other terms 

are defined as above. Figure 1.5B illustrates the changes in jobs accessibility between the two 
time periods. Accessibility was clearly impacted by the changes in transit service provision, with 
the population-weighted mean number of jobs accessible dropping from 35,694 to 33,243 in the 
Wasatch Front, and 23,410 to 21,666 in Portland. These figures are quite disturbing, considering 
the supposed increase in transit service provision by the UTA. The spatial patterns indicate that 
the expansion of commuter rail did little to improve the jobs accessibility in Utah County 
(towards the south) using the threshold of 60 minutes. At the same time, the removal of bus 
services in the center of the city had a clear negative impact on jobs accessibility throughout 
much of the city. The locations that experienced increases in jobs access are within very close 
proximity of the various light rail Trax expansions in the region. Combined, this indicates that 
the short-term effect of transit expansion on jobs accessibility puts light rail ahead of commuter 
rail.  
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1.6 CASE STUDY THREE: THE EFFECTS OF BICYCLE USE ON THE 
LAST MILE PROBLEM 

The “last mile problem” in public transportation planning concerns the distance between the 
transit network and actual trip endpoints that are often too long to effectively accommodate by 
walking. Bicycle use is suggested as a potential solution to this issue due to its low cost and 
faster speed of travel (Shaheen, Guzman and Zhang, 2010; Liu, Jia and Cheng, 2012). Yet, there 
is little previous work that attempts to evaluate the impact of joint bicycle and transit use on 
reducing travel times and increasing travel time reliability. Travel time cubes are well positioned 
in the use of evaluating the latter, as they contain the full-day time-series of travel times from 
origins to destinations. In this case study, we compare travel time patterns using two travel time 
cubes. The first, as previously defined, assumes a 4.8 km/h walk speed for ingress, egress and 
transferring. The second assumes a 15 km/h bicycling speed for ingress, egress and transferring. 
In addition, due to increased boarding and alighting delays associated with travelling on transit 
with a bicycle, we double these delays from 15 to 30 seconds. Descriptive statistics of the travel 
time cubes are compared between scenarios in an attempt to quantify the time savings and 
increased stability associated with combining bicycle use with public transit.  
 Upon initial investigation of the results, we discovered that the major benefits associated 
with travel using the bicycle accrued to those with trip endpoints (i.e., origins or destinations) at 
great distances from transit stops. Finding this a somewhat banal example, we focused our 
analysis on the particular case of reaching destinations in downtown Salt Lake City by assuming 
a starting point at Salt Lake Central Station, where commuter rail, light rail and major bus routes 
have termini. In this way, we can evaluate how bicycle use helps arriving passengers in the 
central city reach their final destinations, which may require lengthy walks, and/or long waiting 
and in-vehicle travel times in the case of transfers.   
 Before delving into the downtown focus, we discuss the aggregate results pertaining to 
the two study areas found in Figure 1.6. First, we observe that cycling results in a 37% reduction 
in mean travel times throughout the 24-hour period in both study areas. Moreover, stability in 
travel times is increased via the introduction of the bicycle, with a 42% reduction in standard 
deviation found in Portland and a 39% reduction in Salt Lake City. The improvements in travel 
times tend to be consistent over the course of the day (as seen in Figure 1.6A), with slightly 
larger effects starting in the evening and lasting until the middle of the night. This is presumably 
due to the decreased transit service at night, and therefore a large increase in travel speed using a 
bicycle compared to trips composed of more walking and waiting. From a spatial perspective, the 
travel time savings are clearly most attributed to more peripheral origins, where long walking 
ingress times are most significantly reduced by faster bicycle speeds (Figure 1.6C). 
Interestingly, the impact of bicycling on travel time stability (Figure 1.6D) is found to have a 
donut shape, with higher impacts in the city center, followed by lower impacts in the inner 
suburbs, and then again higher in the outer periphery. The fact that stability is enhanced for trips 
in the center of the city indicates that the bicycle may truly be of benefit to the last mile problem 
there. 
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Figure 1.6 A Comparison of Transit Travel Times Joint with Walking Versus Cycling.  Average Travel Times are Depicted in A and C, while Standard 

Deviations of Travel Times are Depicted in B and D
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Figure 1.7 Transit Travel Time Improvements in the Center of Salt Lake City Associated with Bicycle Use. 
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Next we discuss the results pertaining to passengers arriving downtown at the intermodal 
hub, Salt Lake City Central Station. The set of destinations for these analyses are limited to those 
found in Figure 1.7, representing an area bounded by major municipal, land use and 
transportation barriers. This region comprises 9% of the region’s population and 18% of its jobs. 
As seen in the figure, when replacing walking with cycling, travel from the intermodal hub to the 
rest of the study area is greatly improved. This is indicated by a 32% reduction in travel times 
within the morning rush hour (7-9 a.m.) and 47% reduction in standard deviation of travel time. 
The spatial patterns of travel time and variation improvements are quite similar, with increasing 
benefits accruing to farther away destinations. From the perspective of travel time reductions 
(Figure 1.7A), we see that the concentric pattern of improvements is modified by the transit 
network, where areas of sparser network coverage receive additional benefit from bicycle use. 
The same is true for travel time stability (Figure 1.7B). In both cases, travel to the west is more 
improved than the east, reflective of the relative share of transit routes travelling east versus west 
from the intermodal hub.    
 

1.7 DISCUSSION AND CONCLUSIONS 

In this paper we put forward a new data object called the public transit travel time cube and 
demonstrated its use in three case studies that evaluate how different types of changes to the 
public transit network impact a variety of travel time characteristics in a region. The novelty of 
this approach does not come from the travel time computations themselves, but rather the 
exhaustive precomputation of all possible travel times in the region, at all times of day. With 
advances in the abilities of commercial geographic information systems to compute transit-based 
travel times, coupled with the prevalence of cloud computing and off-the-shelf multiple core 
desktop computers, computing, storing and analyzing travel time cubes is only now a truly 
feasible endeavor. Through a series of case studies, this paper shows how travel time cubes can 
unlock new ways to describe spatiotemporal patterns of travel times, use these travel times in the 
development of more sophisticated measures of accessibility, and help quantify the impact of 
accommodating joint bicycle and transit trips.  

Going forward, we foresee many directions for continued research on travel time cubes. 
First, from a technological perspective, we are in need of a custom-designed visualization tool 
for rapid and interactive exploration of the travel time cube. Collaboration is already underway 
with Miriah Meyer, a computer scientist and visualization researcher at the University of Utah, 
on the development of an open source visualization tool for travel time cubes.  

Second, algorithmically, faster computation of travel time cubes would allow for more 
detailed comparisons of transit planning scenarios. We currently compute an OD cost matrix for 
every minute of the day, without any interaction between computations. It is likely that knowing 
the cost matrix for minute 𝑚𝑚 will be useful in the computation of the cost matrix at minute 𝑚𝑚 +
1, yet our algorithms do not yet exploit these structural dependencies. Interestingly, this 
dependence turns out to be very useful in the compression of data cubes for storage, as each OD 
time series can be losslessly stored as a series of coordinate plots with linear splines, but we are 
not exploiting this serial dependence in the cube’s computation.  

Third, the travel time cube only stores a single characteristic of public transit travel, 
travel time, yet other characteristics of each trip in the cube, such as the number of connections 
required, or a disaggregation of travel times by walking, waiting and in-vehicle times, may be 
very useful in future analyses of accessibility, mode choice modeling or social equity. This 
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would require a shift from the current GIS-based algorithms for computing travel times, to more 
specialized algorithms that can retrieve and store multiple characteristics of the computed 
shortest path in addition to travel time, essentially requiring an additional cube for each 
characteristic.  

The aim of this paper was to introduce the reader to the vast potential of the development 
and analysis of public transit travel time cubes, but these demonstrations were not exhaustive. 
Elsewhere, travel time cubes have also been shown to be effective in broadening the 
investigation of food deserts into the temporal domain (Farber, Morang and Widener, 2014), 
understanding spatiotemporal mismatch between transit demand and supply from a social equity 
perspective (Ritter, 2014), and proving that temporal variation in transit-based jobs accessibility 
impacts one’s mode choice decision (Owen and Levinson, 2015). The latter case is especially 
useful in pointing to future research in which travel time variability is more broadly used to 
identify markets of untapped potential transit riders, an objective shared by many transit agencies 
worldwide. 
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2.1 ABSTRACT 

In the absence of other alternatives, people who rely on public transportation to conduct their 
daily activities have travel patterns that differ from discretionary transit users, especially those 
who choose to use transit for work trips. At the same time, in many regions around the world, 
public transportation is primarily designed to accommodate peak-hour travel demands in order to 
reduce congestion and its impacts. It is theorized that this results in a mismatch between the 
demand and supply of public transportation amongst populations at risk of social exclusion. In 
this research, we characterize and compare the spatiotemporal patterns of travel demand and 
transit supply. Our analysis consists of a comparison between observed travel patterns and a new 
temporal measure of transit supply based on travel times. We measure travel demand with the 
observed trip-making characteristics (i.e., origin, destination, time-of-day) of the respondents to 
two transportation surveys conducted in Utah. Transit supply is characterized using a transit 
travel time cube, a three-dimensional array of origin-destination transit travel times computed for 
all origins, destinations and times of day. Mismatch is examined by descriptive and multivariate 
comparisons of observed trips and computed levels of transit provision. Our results confirm this 
theory: More marginalized groups demand travel between locations at times of the day that are 
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poorly served by transit. However, when controlling for all variables simultaneously in a 
multivariate regression, few socioeconomic factors remain significant, indicating the overall 
importance of employment status, making work trips and travelling during peak times, in 
explaining mismatch. 

2.2  INTRODUCTION 

In an urban context, a just society includes equitable access to public transportation (Martens, 
2009; Martens, Golub and Robinson, 2012; Golub and Martens, 2014). One way to achieve 
equity, vertical equity in particular, is to provide transit service to those people who need it most, 
where need is most often assessed using considerations of socioeconomic status (Litman, 2002; 
Litman and Brenman, 2011; Bullard, Johnson and Torres, 2004). Of course, transportation 
planning incorporates a complex set of technical and political processes, and social equity is but 
one consideration in a multi-objective agenda that has often favoured more readily measurable, 
predictable and pecuniarily expressible outcomes of transport models like travel-time savings, 
congestion and throughput (Deka, 2004). As according to the adage, “we build what we 
measure,” transport planning has focused on achieving increased mobility rather than explicitly 
increasing accessibility or the equitable distribution of the accessibility benefit between modes 
(Martens, Golub and Robinson, 2012; Benenson et al., 2011; Golub and Martens, 2014; 
Kaplan et al., 2014), across space (Martens, Golub and Robinson, 2012; Welch and Mishra, 
2013), and between population groups (Welch, 2013; Delbosc and Currie, 2011). As a result, 
some public transportation systems fall short of meeting the needs of those who depend on 
transit to participate in daily activities, putting people at risk of transport-related social exclusion 
(Church, Frost and Sullivan, 2000; Lucas, Grosvenor and Simpson, 2001; Hine, 2003; Kenyon, 
2003; Raje, 2004; Kenyon, 2006; Preston and Rajé, 2007; Páez et al., 2009; Lucas, 2012). 

Most studies of social equity and public transit accessibility entail an aggregate 
comparison between transit need and transit supply. In these studies, transit need is often 
established over space as a measure of socioeconomic status in neighborhood units while transit 
supply is typically measured at the neighborhood level as the ease of reaching transit facilities 
(Murray et al., 1998; O'Neill, Ramsey and Chou, 1992; Moniruzzaman and Páez, 2012), 
reaching transit facilities weighted by level of service (Rood and Sprowls, 1998; Henk and 
Hubbard, 1996; Ryus et al., 2000; Hunter-Zaworski, 2003; Drew and Rowe, 2010; Al 
Mamun and Lownes, 2011; Currie, 2010), or reaching actual destinations with transit 
(O'Sullivan, Morrison and Shearer, 2000; Lei and Church, 2010; Foth, Manaugh and El-
Geneidy, 2013; Páez and Farber, 2012; Farber, Morang and Widener, 2014).  One drawback 
of these studies is that transit need is poorly characterized by zonal population characteristics 
since different population groups demand travel to different types of destinations at different 
times of the day. Similarly, accessibility is poorly characterized by generalized measures of 
station access or destination access since travel times to destinations can be highly variable 
depending on time-of-day variations in schedules. Ignoring the temporal fluctuations in activity 
patterns and travel times makes it difficult to know whether the transit services that are 
“provided” are actually what is “needed” by different population groups at different times of day. 
In an effort to address temporal variations in transit access, Polzin, Pendyala and Navari (2002) 
conduct a time-of-day mismatch study of aggregate travel demand by computing the percentage 
of origin-destination flows in a region that could be feasibly met by the current provision of 
public transit. They consider feasibility as a threshold of acceptable wait time at the origin, and 
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frequency of service at the destination. Although their approach measures temporal mismatch in 
terms of total travel demand in a region, they make no attempt to further explore the 
distributional aspects of this mismatch between social groups. In fact, few equity studies have 
considered the unique spatiotemporal signatures of transit supply and travel demand for different 
population groups, yet doing so greatly increases the validity of the analysis and could lead to 
policies that more effectively increase equity in transit provision (Farber, Morang and Widener, 
2014; Owen and Levinson, 2014; Ritter, 2014). The purpose of this study is to investigate how 
well public transit matches the spatiotemporal travel patterns for different population groups in 
the Wasatch Front, Utah. To accomplish this task, we: a) characterize travel patterns using 
observed trips from household travel and onboard passenger survey data; b) put forward a 
measure of spatiotemporal transit service based on origin-to-destination travel times; and c) 
determine whether socioeconomic status is associated with travel demands that are 
spatiotemporally mismatched with transit supply in the region. 

The rest of the paper is organized as follows: In the next section we describe the travel 
time cube and how we use it to create a temporally dynamic measure of transit service. We also 
put forward our empirical analysis plan, and provide a description of our study area and datasets. 
In the third section we present and discuss the results of our descriptive and multivariate analysis 
of transit mismatch. We conclude the paper in Section 5 with a brief summary of results and a 
discussion about policy implications, and we propose several avenues for future research. 
 

2.3 METHOD 

2.3.1 The Public Transit Travel Time Cube 

We propose a new data object, the public transit travel time cube, which can be used to 
establish spatiotemporal signatures of transit service in a region. The travel time cube is a three-
dimensional array 𝑇𝑇 = [𝑡𝑡𝑖𝑖,𝑗𝑗,𝑚𝑚] where 𝑡𝑡𝑖𝑖,𝑗𝑗,𝑚𝑚 is the shortest public transit travel time from location 
𝑖𝑖 to location 𝑗𝑗 at time 𝑚𝑚1. In this case, 𝑖𝑖 and 𝑗𝑗 index population-weighted block group centroids 
in the region, and 𝑚𝑚 is used to index the minutes in a day. So, for example, 𝑡𝑡4,10,480 is the travel 
time from block group 4 to block group 10 with a departure time of 8 a.m. (the 480th minute in 
the day).  

In practice, the cube is computed in a GIS making use of a pedestrian network file (to 
model ingress and egress times), and a transit network and schedule stored as a General Transit 
Feed Specification (GTFS) package2. An Esri ArcMap plugin named Add GTFS to Network 
Analyst is used to create a routable multimodal Network Dataset and custom travel time 
evaluators which enable the use of many Esri ArcMap Network Analyst functions. We use 
the Esri OD Cost Matrix tool to compute shortest path travel times from centroid to centroid 
in the region, and custom Python scripts are employed to process the computational 
workflow of iterating cost matrix computations over every start-time minute of the day. 

                                                 
1 The travel time recorded is the shortest path found in the multimodal network at a particular time of departure. It 
includes ingress, egress, waiting and transfer time associated with the fastest trip. If the shortest travel time is found 
by walking only, then the walking only trip time is recorded in the cube. 
2 Because of this, our transit travel time cube is based on scheduled travel times, and is not sensitive to real-world 
service disruptions or congestion. Future work investigating real-time or historical vehicle location data is one 
possible extension of the travel time cube research thread. 
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Similar data objects built with tools from Esri and other developers have been used 
elsewhere in the literature (Owen and Levinson, 2014; Lei, Chen and Goulias, 2012; Farber, 
Morang and Widener, 2014). 

For our case study, we used the Utah Transit Authority (UTA) GTFS data to create 
travel time cubes for a typical weekday, Saturday and Sunday. The particular GTFS package 
used for this research consisted of service dates ranging from August 19th to December 7th, 2013 
and included 122 transit routes, 6,202 transit stops, and 7,472 transit trips. Our study area 
contains 1,326 block groups, resulting in 1326x1326x1440≈2.5 billion uniquely computed 
shortest path travel times per cube. Given the volume of computations and the ensuing data 
storage demands, we employed distributed processing in a windows ArcGIS environment to 
speed up the runtime of our computations. The study area, seen in Figure 2.1, was trimmed by 
excluding some peripheral block groups that either had no transit service, or only very 
specialized services for accessing ski resorts and distant urban settlements. Also, the use of 
population weighted centroids ameliorates the effects of varying block group sizes, especially at 
the periphery of the study area. 
 

 
Figure 2.1: Wasatch Front Study Area Block Group Centroids 
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2.3.2 Spatiotemporal Measures of Transit Service  

The individual trip records from the two surveys (see Section 2.4) were combined with 
the travel time cube in order to construct service measures for each observed trip. First, the origin 
and destination (OD) of each recorded trip was associated with an OD pair in the travel time 
cube based on a point-in-polygon assignment. Next, an average transit travel time for an hour-
long period straddling the observed trip departure time was extracted from the travel time cube. 
The average travel time within a one-hour period is assumed to be representative of the transit 
service provided at the time of each recorded trip; this moving average is less sensitive to errors 
in trip time recording that may significantly impact the travel time extracted from the cube. The 
selection of a one-hour buffer (30 minutes before and after the observed trip) smoothes the travel 
time quite substantially (as seen in Figure 2.2). A sensitivity analysis found that a 15-minute 
buffer on each side obtained nearly identical travel time results (RMSE=1.13 minutes) and a 5-
minute buffer on each side obtained a RMSE of 4.90 minutes. The degree of “smoothing” error 
for a given buffer is associated with the frequency of service and how rapidly frequencies of 
service change over the course of the day. While the size of the smoothing window we 
choose may impact the results slightly, we are more comfortable with a higher degree of 
smoothing than the potential for gross over- or underrepresentation of travel times 
associated with a buffer too small. A full sensitivity analysis of the use of different window 
thresholds is recommended for future research.  

Next, we compare the local average travel time (i.e., within 1 hour) of the observed trip to 
the global average (i.e., across the entire day) to determine whether trips took place during 
periods of relatively high or low travel times. Since travel times for OD pairs are subject to 
vastly different magnitudes and scales of variation, the service measure associated with each 
observed trip is standardized into a Z-score as follows: 

 𝒁𝒁𝒒𝒒 = 𝑿𝑿𝒒𝒒−𝝁𝝁𝒒𝒒

𝝈𝝈𝒒𝒒
  (2-1) 

where 𝑋𝑋𝑞𝑞 is the local average travel time for trip record 𝑞𝑞, 𝜇𝜇𝑞𝑞 is the global average trip time 
across the entire day for that OD pair, and 𝜎𝜎𝑞𝑞 is the standard deviation of trip times across the 
day for that OD pair. Thus, 𝑍𝑍𝑞𝑞 is an indicator of whether a trip is taken during a time period in 
which service frequencies are relatively higher or lower for that OD pair. Positive Z-scores 
indicate higher travel times at the time that an observed trip was made, while negative Z-scores 
indicate below average travel times. In addition to this measure, we similarly compute Z-scores 
based on travel speed by dividing the travel times in the travel time cube by the Euclidean 
distance between origins and destinations. Travel speed, calculated in this manner, is a measure 
of how well the transit network services the particular OD pair, regardless of distance traveled. 
 Figure 2.2 illustrates how the Z-scores are computed and interpreted. In this example, a 
pair of bus stops is connected by a single bus route. The in-vehicle journey time is fixed at 20 
minutes. Further assume that the walking time between origin and destination is fixed at some 
duration greater than 49 minutes. During peak hours (7-9 a.m. and 4-6 p.m.) a bus departs every 
10 minutes, and every 30 minutes at all other times. The blue time series depicts the estimated 
travel time (waiting time plus in-vehicle time) for the OD pair over the course of the day, from 6 
a.m. to 10 p.m. The best case travel time is 20 minutes, when a journey begins at the exact 
moment of an arriving bus. The worst case occurs during the off-peak times when a journey 
begins immediately following the departure of a bus. In this case, the maximum estimated travel 
time is 49 minutes (29 minutes of waiting plus 20 minutes of in-vehicle time). The mean travel 
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time, 𝜇𝜇𝑞𝑞=32 minutes, is depicted by the red horizontal bar, and the standard deviation of travel 
times, 𝜎𝜎𝑞𝑞, not depicted graphically, is just less than 9 minutes. The yellow curve depicts the 60-
minute moving average travel time, 𝑋𝑋𝑞𝑞 from the equation above. The Z-scores for different times 
of the day are similarly depicted by the yellow curve, with their values appearing on the 
secondary vertical axis. As can easily be seen, when an individual makes a trip when service 
frequency is higher, the associated Z-score for travel time will be more negative. Similarly, 
during periods of relative poorer levels of service, Z-cores will be more positive. In reality, OD 
travel times, especially those connected via multiple routes or involving transfers, will not vary 
as regularly as the example provided. Using our methodology, we are able to discriminate 
between irregular fluctuations in travel times, not just those simply captured in a peak/off-peak 
dichotomy.  

 
Figure 2.2: Illustration and Interpretation of Level of Service Z-scores 

  
One additional note about the creation of Z-scores must be made. The travel time standard 
deviation, 𝜎𝜎𝑞𝑞 , equals 0 for a small number of observed trips that rely on walking only. These 
trips were excluded from the analysis since they have undefined Z-scores.  
 
2.3.3 Comparing Travel Patterns to Transit Service 

Two methods are used to determine whether there are systematic relationships between 
trip-maker characteristics and the supplied transit service at the time of their trips: ANOVA and 
multivariate ordinary least squares (OLS) regression. All available factors from the travel 
surveys were used in our analysis. These include person, household and trip-level characteristics 
(See Table 2.2 and Table 2.3 for a complete list of variables). In an effort to study service 
disparities by socioeconomic status, if socioeconomic status is found to have a significant and 
positive (negative) relationship with the standardized travel time (travel speed) Z-scores, our 
hypothesis that transit supply is less likely to meet the needs of those in need is supported. 
Conversely, if transit provision does not occur in synch with when less affluent people travel, 
then we could conclude that transit is less likely to meet their needs compared to meeting the 
needs of the affluent.  
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2.3.4 Data Used to Indicate Travel Patterns 

The Utah Household Travel Survey (UHTS) and the UTA Onboard Survey (UOBS) were 
used to indicate the spatiotemporal travel patterns for different social groups. These surveys are 
quite different in scope and sampling method. The UHTS is a state-wide household travel survey 
typical of those collected for U.S. metropolitan regions. The one-day trip survey recorded 
101,404 trips taken by 27,046 individuals living in 9,155 randomly selected households across 
the state of Utah. The survey, being partially funded by Metropolitan Planning Organizations 
along the Wasatch Front, oversampled the urbanized regions of the state in which UTA operates. 
This provides a spatially dense sample of households considered to be within the operating 
district of the transit authority. The UHTS collected information about individual trips, the trip-
makers and their households, and has been used as a data source in a number of peer reviewed 
articles appearing in the literature (Farber et al., 2014; Tian, Ewing and Greene, 2014; Burbidge, 
2012; Liao, Farber and Ewing, 2015). Importantly, the observed trips include those made by all 
modes. This is in contrast to the trips observed in the UOBS, which only include those done by 
transit. 

The UOBS was collected in 2011 with the goal of describing transit riders as well as 
calculating overall ridership levels on transit services offered by UTA. Respondents were 
intercepted randomly at transit stations and aboard transit vehicles. In total, 7,123 passengers 
provided usable responses which included some basic sociodemographic information, and 
detailed information on the particular trip being made when intercepted. Each respondent 
indicated whether or not a return trip was planned, and what the planned departure time of the 
return would likely be. Z-scores were created for these return trips and added to the analysis 
dataset despite not being observed directly.  

The perspective taken in this paper is that the observed activity patterns, especially the 
timing of activities, represents an inherent desire to participate in activities at different times of 
the day, depending on the socioeconomic characteristics of the respondents. Amongst transit 
users, the above assumption is somewhat flawed, as a person will time the departure from their 
house with the scheduled arrival of a bus, but this type of timing adjustment occurs at a micro-
scale, within the constraints of the route headway. The type of mismatch that we are 
investigating has to do with larger scale differences in the timing of activities (e.g., peak vs. off-
peak, not 8 a.m. vs. 8:15 a.m.).  
 

2.4  RESULTS AND DISCUSSION 

2.4.1 ANOVA 

The ANOVA results for the UHTS and UOBS datasets are presented in Table 2.2 and 
Table 2.3, respectively. The tables show the relationships between a host of independent factors 
and two measures of standardized transit service: transit travel time and transit travel speed. In 
both cases, the measures are standardized temporally against the mean travel times and speeds 
for each trip across the entire day. For example, in Table 2.2, observe that travelers from 
households earning over $250,000 per year have a mean travel time Z-score of -0.124 while 
those earning less than $10,000 have a mean travel time Z-score of 0.034. This indicates that 
those from high-income households typically have spatiotemporal travel demands during periods 
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of more frequent transit service than those in the low-income bracket. Similarly, for the same 
income categories, we see that travel speeds for high-income travelers have a Z-score of 0.156 
compared to -0.056 for the low-income group. Thus, transit travel speeds for high-income 
travelers tend to be higher relative to the low-income riders. The significance of these group-
wise differences are tested using one-way ANOVA F-tests, and are indicated with asterisks and 
plus signs for travel times and travel speeds, respectively. 

The results indicate a large number of disparities in transit service by individual, 
household and trip-type characteristics. In terms of travel time, all variables are significant at 
least to the 0.05 level. For travel speed, all variables are significant except mobility status, 
Hispanic status and household income. We opt to further interpret the nature of these disparities 
based on the OLS regression results, where confounding factors can be suitably controlled. 
However, the reader can confirm that for most factors, socioeconomic disadvantage (e.g., lower 
income, Hispanic, only partial employment, higher rates of residential mobility, etc.) is 
associated with poorer levels of transit provision in terms of travel time and travel speed. 
Interestingly, the Z-scores for the on-board survey convey that transit trips are taking place 
during higher service periods as compared to the full set of trips observed in the UHTS. This is 
likely due to the rational decision by transit riders to travel during periods of better service. Be 
that as it may, there are still large transit service disparities between socioeconomic groups 
within the UOBS results. And, the fact that transit service provision is poorer for needier 
socioeconomic groups who are travelling by car (as observed in the UHTS data) may indicate 
that their temporal demands for activity participation are not being met by the temporally 
dynamic supply of transit services.  
 
Table 2.1: Utah Household Travel Survey (UHTS) ANOVA Tests for Travel Time and Trip Speed 

Factor Level Mean 
Time Z 

Mean 
Speed  Z 

 Factor Level Mean 
Time Z 

Mean 
Speed  Z 

Res. Type Single Family -0.091 0.109  Mobility  Limited Mob. -0.128 0.124 

*** Townhouse -0.106 0.131  ** No Limited 
Mob. -0.079 0.096 

++ Multi-Family -0.053 0.015    N/A 0.181 -0.1 

  < 3 Apts. -0.209 0.204  Gender Male -0.099 0.122 
  > 4 Apts. 0.03 -0.009  **/++ Female -0.06 0.073 
  Mobile -0.082 0.187  Hispanic Not-Hispanic -0.083 0.1 
  Dorm -0.067 -0.018  * Hispanic 0.002 -0.015 
  Other -0.666 0.573    N/A 0.013 0.077 

Years at Res. >20 -0.271 0.156  Income Over 250K -0.124 0.156 
*** 16-20 -0.168 0.157  ** 200K – 250K -0.122 0.232 
+ 11-15 -0.089 0.115    150K – 200K -0.1 0.123 
  6-10 -0.06 0.072    100K – 150K -0.088 0.102 
  1-5 -0.069 0.093    75K – 100K -0.117 0.141 
  < 1 0.028 -0.019    50K – 75K -0.085 0.101 

Place Type City Downtown 0.028 -0.019    35K – 50K -0.054 0.062 
*** City Residential  -0.069 0.093    25K – 35K -0.03 0.069 
+ Suburbs (Mix) -0.06 0.072    10K – 25K -0.014 0.035 
  Suburbs (House) -0.089 0.115    Under 10K 0.034 -0.056 
  Small Town -0.168 0.157  Education Grad. Degree -0.124 0.173 
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  Other -0.271 0.156  *** Bachelors -0.098 0.114 

Age 85 + -0.158 0.28  +++ Technical -0.09 0.116 
*** 75 – 84 -0.169 0.253    Some College -0.045 0.032 
+++ 65 – 74 -0.133 0.19    Associates  -0.033 0.05 
  55 – 64 -0.097 0.128    HS Diploma -0.027 0.046 
  45 – 54 -0.108 0.127    Less than HS -0.021 0.051 
  35 - 44 -0.089 0.094  Trip 

Purpose† HBW -0.277 0.331 

  25 – 34 -0.068 0.069  *** HBSch -0.144 0.222 
  18 – 24  0.092 -0.098  +++ HBShp -0.016 -0.016 

Employment  
Status Full-Time -0.115 0.12 

 
  HBPb -0.173 0.212 

*** Part-Time -0.014 0.007    HBO 0.151 -0.17 
+++ Self-employed -0.03 0.052    NHBW -0.254 0.289 
  Student (>25) 0.086 -0.105    NHBNW -0.044 0.067 
  Student (<25) 0.042 -0.039  Travel 

Time†† Peak -0.505 0.639 

  Homemaker -0.056 0.089  ***/+++ Off-Peak 0.224 -0.289 
  Not-employed -0.046 0.09      
  Retired -0.137 0.211      

*,**,***  indicate significance of the ANOVA test for travel time at 0.05, 0.01 and 0.001, respectively. 
+,++,+++  indicate significance of the ANOVA test for travel speed at 0.05, 0.01 and 0.001, respectively.† HBO: Home-based 
other; HBPb: Home-based personal business; HBSch: Home-based school; HBShp: Home-based shopping; HBW: Home-based 
work; NHBW: Non-home-based work; NHWNW: Non-home-based non-work. 
†† Peak: 6 a.m.-9 a.m. or 3p.m.-6 p.m.; Off-peak: all other times. 
 
 
Table 2.2: Utah Onboard Survey (UOBS) ANOVA Tests for Travel Time and Trip Speed 

Factor Level Mean 
Time Z 

Mean 
Speed  Z 

 Factor Level Mean 
Time Z 

Mean 
Speed  Z 

Age 65 + -0.439 0.986  Mode FrontRunner -0.537 1.295 

*** 45 – 64 -0.493 1.154  *** TRAX -0.277 0.692 

+++ 25 – 44 -0.413 0.979  +++ Bus -0.527 1.125 
  18 – 24 -0.301 0.636    N/A -0.524 0.979 

Income Over 75K -0.549 1.239  Trip Type† HBW -0.534 1.272 

*** 50K–75K -0.451 1.033  *** HBC -0.341 0.746 

+++ 35K–50K -0.391 0.959  +++ HBO -0.177 0.420 

  25K–35K -0.339 0.738    NHB -0.303 0.638 
  15K–25K -0.306 0.706  Fare type Cash -0.275 0.579 
  < 15K -0.276 0.660  *** One-Way -0.326 0.880 
No. of 
Vehicles 4 +  -0.485 1.082  +++ Reduced Fare -0.257 0.404 

*** 3  -0.485 1.020    Day/Group -0.187 0.406 

+++ 2  -0.468 1.074    Discounted -0.333 0.741 

  1  -0.351 0.854    Adult -0.481 1.170 
  None -0.221 0.587    Ed/Eco/Annual -0.532 1.214 

Licensed Licensed -0.425 0.985    Senior -0.534 1.046 
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***/+++ Not 
Licensed -0.271 0.592    Student -0.33 0.761 

Frequency 7 Days -0.172 0.470    Medicaid -0.27 0.709 

*** 6 Days -0.295 0.726    Free Fare -0.132 0.419 

+++ 5 Days -0.464 1.096  Egress Mode Drove -0.496 1.082 

  4 Days -0.457 1.095  *** Walk -0.394 0.926 

  3 Days -0.437 0.927  ++ Bike -0.265 0.635 
  2 Days -0.356 0.830   Ingress Mode Drove -0.462 1.062 
  1 Day -0.370 0.788  *** Walk -0.389 0.900 
  Less than 

1 / week -0.207 0.273  ++ Bike -0.273 0.655 

  First 
Time -0.315 0.879  

    
*,**,***  indicate significance of the ANOVA test for travel time at 0.05, 0.01 and 0.001, respectively. 
+,++,+++  indicate significance of the ANOVA test for travel speed at 0.05, 0.01 and 0.001, respectively. 
† HBW: Home-based work; HBC: Home-based college/university/technical school as student; HBO: Home-based other; NHB: 
Non-home based. 
 
2.4.2 Multivariate Regression Results 

Next we present results for three models predicting the Z-score for travel time based on 
the Utah Household Travel Survey data (N=34,409). The first model is a full model that controls 
for all trip-level, individual, and household-level factors in the survey. In the second model, trip-
level characteristics are removed. Finally, in the third model, a backwards stepwise regression 
using the Akaike Information Criterion is calibrated using model two as the starting point.  

 
The purpose for estimating these regression models is to discover which of the correlated 

socioeconomic factors remain statistically significant while controlling for them simultaneously. 
This analysis is strictly exploratory, with the major emphasis on understanding the direction, 
magnitude and significance of the regression coefficients. Thus, the small but significant value of 
𝑅𝑅2 for the models is not a large cause for concern (See Table 3). It should be noted that records 
with (|Z-scores| > 3) were filtered before the regression so that undue influence from extreme 
values could be mitigated (2.2% of records were removed).  

Since the variables are all categorically measured, the regression coefficients represent 
direct adjustments to the estimated Z-scores. We make several findings through a comparison of 
model results found in Table 3: 

• The trip-level characteristics of Trip Purpose and Peak Travel are the most explanatory 
variables in the model. This makes sense, as we know that a) work trips are more likely to be 
made during peak hours, and b) service frequencies are likely to be higher during peak hours.  

• Age. Compared to the middle-aged, youth are more likely to travel during lower periods of 
service, and the older one gets the more likely they are to travel during periods of higher 
service, even for those older than 65 years. These relationships hold even while controlling 
for trip-level characteristics, suggesting a strong mismatch between demand and supply for 
younger adults, and a better than average match for older adults.  

• Gender. There is a slight gender effect with females being associated with modest levels of 
mismatch. This effect diminishes when controlling for trip characteristics. 
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• Employment status. This factor seems to be highly correlated with the trip-level 
characteristics. When trip characteristics are left uncontrolled, all employment statuses 
compared to full-time employed are associated with higher degrees of mismatch. When trip 
characteristics are controlled, being full-time employed is associated with more mismatch 
than the other statuses. This is most likely a result of the high degree of association between 
employment status and the timing, purposes and destinations of trips that are made (e.g., 
more work trips to highly served downtown during peak periods).  

• Insignificant individual level factors. When controlling for other factors, there is no 
relationship between mismatch and education status, Hispanic status, race, having a driver’s 
license, or having limited mobility. 

• Household factors. People living alone are more likely associated with transit mismatch than 
those living in larger household arrangements. Also, self-reported housing type is 
consistently significant on several factors. Interestingly, those living in small apartment 
buildings (three or less units) have less mismatch than those in single detached housing, 
while those in larger apartment complexes (four or more units) are associated with more 
mismatch. This is true whether or not controls for trip characteristics are in place, and is 
perhaps an artifact of the spatial distributions of large and small apartment buildings with 
respect to the transit network. More spatial analysis is required for this relationship to be 
better understood. 

• Insignificant household level factors. Once controlling for other factors, there is no consistent 
relationship between mismatch and household income or self-reported place of residence 
type. There are several factor levels that obtain significance in models one and two for these 
variables, but none that lend much interpretive value to the question at hand. 

Table 2.3: Summary of Ordinary Least Squares Regression Analysis for Variables Predicting Travel Time Z-
Scores using the UHTS data (𝑵𝑵=34,409) 

 Model 1 Model 2 Model 3 

Variable Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Intercept -0.024 0.019 -0.179 0.019*** -0.166 0.016*** 
Trip Factors       
Trip Purpose (HBW) †       
   HBSch 0.153 0.022*** - - - - 
   HBShp 0.251 0.014*** - - - - 
   HBPb 0.105 0.016*** - - - - 
   HBO 0.304 0.011*** - - - - 
   NHBW 0.005 0.012 - - - - 
   NHBNW 0.193 0.012*** - - - - 
Peak Travel (Off Peak) ††      
   Peak -0.482 0.007*** - - - - 
Individual Factors       
Age (35 - 44)       
   18 - 24 0.066 0.016*** 0.079 0.017*** 0.081 0.017*** 
   25 - 34 0.008 0.011 0.011 0.011 0.009 0.011 
   45 - 54 -0.017 0.012 -0.015 0.013 -0.014 0.013 
   55 - 64 -0.033 0.013** -0.028 0.014* -0.029 0.014* 
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   65 - 74 -0.063 0.018*** -0.053 0.019** -0.055 0.019** 
   75 - 84 -0.090 0.025*** -0.07 0.027** -0.071 0.027** 
   85+ -0.098 0.053’ -0.113 0.058* -0.113 0.057* 
Gender (Male)       
   Female -0.001 0.008 0.016 0.008’ 0.017 0.008* 
Employment Status (Full-time)      
   Part-time -0.014 0.012 0.096 0.013*** 0.097 0.013*** 
   Self-employed -0.034 0.015* 0.094 0.016*** 0.095 0.016*** 
   Student (>25) 0.015 0.024 0.084 0.026** 0.095 0.026*** 
   Student (<25) -0.079 0.019*** 0.053 0.020** 0.060 0.020** 
   Homemaker -0.078 0.013*** 0.126 0.013*** 0.126 0.013*** 
   Not employed -0.134 0.022*** 0.063 0.023** 0.070 0.022** 
   Retired -0.137 0.016*** 0.066 0.017*** 0.067 0.017*** 
Education (Bachelors)      
   Grad. Degree 0.008 0.010 0.005 0.011 - - 
   Technical 0.029 0.020 0.026 0.022 - - 
   Some College 0.004 0.010 0.007 0.010 - - 
   Associates 0.015 0.013 0.024 0.014’ - - 
   HS Diploma 0.008 0.013 0.012 0.014 - - 
   Less than HS 0.033 0.031 0.015 0.034 - - 
Hispanic (No)       
   Yes 0.018 0.019 0.021 0.021 - - 
   N/A 0.004 0.036 -0.002 0.039 - - 
Race (White)       
   Other -0.008 0.016 -0.029 0.018 -0.021 0.017 
   N/A -0.042 0.030 -0.049 0.033 -0.044 0.023’ 
Licensed (No)       
   Yes -0.027 0.026 -0.048 0.028’ - - 
Limited Mobility (No)       
   Yes 0.025 0.027 0.033 0.029 - - 
   N/A 0.039 0.048 0.055 0.052 - - 
Household Factors       
Household Size -0.012 0.003*** -0.013 0.003*** -0.014 0.003*** 
Household Income (50k-75k)      
   Under 10k 0.034 0.029 0.037 0.031 - - 
   10k-25k 0.006 0.017 0.022 0.018 - - 
   25k-35k 0.013 0.015 0.009 0.017 - - 
   35k-50k -0.008 0.012 0.001 0.013 - - 
   75k-100k -0.025 0.011* -0.010 0.012 - - 
   100k-150k 0.005 0.011 0.007 0.012 - - 
   150k-200k -0.007 0.018 -0.002 0.020 - - 
   200k-250k 0.042 0.029 0.082 0.031** - - 
   Over 250k -0.024 0.028 -0.006 0.031 - - 
   N/A -0.004 0.013 0.001 0.014 - - 
Place Type (Suburbs w/ Houses)      
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   City Downtown 0.033 0.019’ 0.048 0.021* - - 
   City Residential -0.005 0.009 0.006 0.009 - - 
   Suburbs (Mixed) -0.008 0.009 0.005 0.010 - - 
   Small Town -0.027 0.017 -0.022 0.018 - - 
   Other -0.017 0.028 -0.013 0.030 - - 
Residential Type (Single Family)      
   Townhouse -0.013 0.015 -0.030 0.016’ -0.027 0.016’ 
   Multi-Family -0.021 0.023 -0.013 0.025 -0.004 0.024 
   <3 Apts. -0.077 0.038* -0.082 0.041* -0.081 0.041* 
   >4 Apts. 0.034 0.013** 0.028 0.014’ 0.044 0.013*** 
   Mobile -0.008 0.039 -0.035 0.042 -0.024 0.042 
   Dorm 0.008 0.057 -0.003 0.063 0.009 0.062 
   Other -0.342 0.198’ -0.473 0.216* -0.465 0.216* 
Adjusted 𝑅𝑅2 0.170 0.009 0.009 
𝐹𝐹 for model fit 122.5 (58, 34350)*** 7.0 (51, 34357)*** 13.1 (25, 34383)*** 

’, *, **, ***  indicate significance at 0.1, 0.05, 0.01 and 0.001 respectively. 
The reference category for each factor appears in parentheses. 
† HBO: Home-based other; HBPb: Home-based personal business; HBSch: Home-based school; HBShp: Home-based shopping; 
HBW: Home-based work; NHBW: Non-home-based work; NHWNW: Non-home-based non-work. 
†† Peak: 6-9 a.m. or 3-6 p.m.; Off-peak: all other times. 

 

2.4.3 Conclusions 

A comparison of the descriptive statistics, ANOVA and multivariate results leads to some 
interesting interpretation and meaningful findings. On the one hand, the descriptive statistics of 
mean service Z-scores for different socioeconomic groups tell a very clear story of transit 
mismatch: Those who are most socioeconomically disadvantaged tend to have travel demand 
patterns that are out of synch with the provision of transit services in the region. The vast 
majority of the ANOVA F-tests confirm that the differences between socioeconomic groups are 
statistically significant. The regression results, however, challenge these descriptive findings in 
two ways. First, it appears that trip purpose and peak-period trip making are the most meaningful 
explainers of mismatch. Those who travel for work during peak periods are far more likely to 
travel during periods of higher service provision. Second, many of the factors found to have 
differences in the descriptive analysis lose importance when controlling for simultaneous effects. 
Those that remain significantly related to service level include: age, gender, employment status, 
household size and housing type. Importantly, from a civil rights and environmental justice 
policy perspective in the United States, race and income effects fall out of significance, 
indicating that the system isn’t specifically discriminating along these lines. Nonetheless, due to 
the correlations between employment status, housing type and income, the fact remains that low-
income individuals in the region experience more transit mismatch than those who earn more. It 
is just that the cause is more likely to be the trip-making patterns associated with 
un(der)employment, rather than income itself.  

The importance of trip purpose and time-of-day in explaining transit mismatch hearkens 
to the long tradition of predicting these two outcomes using activity-based approaches to travel 
behavior modelling. Models relating socioeconomic factors of trip-makers to activity purposes 
and timing have been used to better understand behavior and to populate microsimulation 
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transportation models, but seldom have they been viewed through a social equity lens. The 
present papers suggest that this literature should be reviewed from the perspective of mismatch 
between travel demand and transit supply. 
 The methods developed in this research can be improved in a number ways for future 
research. First, the creation of the Z-score, while necessary to control for heterogeneity in 
differences between local and global-average trip times across individuals and space, also 
somewhat obfuscates the interpretation of the regression coefficients. Marginal impacts on 
standardized Z-scores are hardly relatable to policy makers or indeed very meaningful in terms 
of valuing the absolute level of mismatch for an individual’s trips or an entire social group’s 
trips. In the future, more sophisticated modeling techniques that can account for size-effect 
heterogeneity across OD pairs could be employed so that the raw travel times or travel speeds 
can be used as dependent variables. This will allow for a more practical application of this 
research in terms of quantifying the experiences of individual trip-makers and socioeconomic 
groups. 
 
 Besides these technical refinements, there are clearly extensions of the research that 
should bear interest to the transportation research community. First, this research has identified a 
need for a spatial analysis of transit mismatch, with a particular emphasis on locating hotspots of 
mismatch at the origins or destinations of trips, and determining how these relate to current 
levels of transit provision. In particular, it will be important to determine whether mismatch can 
be better reduced through temporal policies (e.g., decreasing headways or shifting time-use 
behavior) or through spatial policies (e.g., expanding network coverage or decreasing the need 
for long-distance trips through land use policies). Second, it seems obvious that transit mismatch 
may be a root determinant of mode choice, and incorporating the degree of mismatch associated 
with a person’s daily activity routine may yield interesting results in a mode choice model. 
 This paper has focused specifically on the equity considerations of a new type of transit 
mismatch, one that incorporates both spatial and temporal patterns of travel demand and public 
transit supply. It is important to recognize that the research was made possible through the 
development and use of the travel time cube, a new data object that embodies the spatiotemporal 
structure of transit connectivity in a region. Besides using the travel time cube to study transit 
mismatch, work is underway to investigate temporal variations in accessibility, new methods to 
quantify the effects of transit network modifications, and the impact of the bicycle in conquering 
the last mile problem in transit service provision. Indeed, the travel time cube is proving to 
be a useful tool that facilitates the study of the role of public transit in society. 
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3.1 ABSTRACT 

Food desert studies attempt to identify geographic areas in which people lack access to sources 
of healthy food.  While academic and policy research often defines access to food stores using 
simple Euclidean distance or road network metrics, dense urban areas with large public transit 
systems call for more sophisticated methods of determining access.  It is particularly important to 
understand the level of access the transit-dependent population has to healthy food vendors, as 
their mobility is largely constrained by the routes and scheduling of their local public 
transportation system. In this study, we analyze public transit access to supermarkets in 
Cincinnati, Ohio.  Using General Transit Feed Specification (GTFS) data from the Southwest 
Ohio Regional Transit Authority (SORTA) and the Transit Authority of Northern Kentucky 
(TANK) and custom ArcGIS tools, we calculate the time it takes to travel from each Cincinnati 
census block to its nearest supermarkets at different times of the day. This transit-travel-time 
matrix allows us to investigate food deserts that change shape based on the time of day 
considered and to calculate the temporal variability in block-level access. Also, by combining 
this time-dependent analysis with census data on race, income and age, we search for disparities 
in average levels of accessibility. The results of this analysis identify the areas and 
subpopulations in Cincinnati with the greatest need for improved access to healthy food stores, 
and will demonstrate how schedule-dependent transportation can be factored into measures of 
accessibility. Ultimately, this study paints a more complete and realistic picture of food deserts in 
Cincinnati and helps policy makers better target interventions aimed at mitigating their effects.   

  

mailto:steven.farber@utoronto.ca


35 
 

3.2 INTRODUCTION 

In transportation research, accessibility is understood as the ease with which interactions 
between people and places can take place (Hansen, 1959). While a plethora of measurement 
approaches exist (for reviews see: Geurs and Van Wee, 2004; Páez, Scott and Morency, 2012; 
Handy and Niemeier, 1997),  accessibility is fundamentally at the intersection of mobility — the 
ease with which people travel — and the spatial configuration of destinations — the locations of 
stores, hospitals, workplaces, etc. to which one measures access (Páez et al., 2010). Holding the 
spatial distribution of destinations constant, it is clear that accessibility can be experienced 
disparately by different people based on varying levels of mobility (Farber and Páez, 2012). For 
example, in most North American cities, automobile drivers likely have higher levels of access to 
suburban employers than do transit riders because of differences in modal travel times. Taking 
this one step further, the accessibility provided by any given mode fluctuates throughout the 
course of the day. Both automobile and transit travel times fluctuate regularly due to congestion, 
but transit travel times are uniquely affected by service provision variables such as vehicle 
headways, scheduling, and the synchronization of transfers (Cooke and Halsey, 1966). This 
means that the accessibility provided by a public transport system is inherently dynamic, and that 
static measures of accessibility provide overly generalized indicators that may not suitably 
represent the actual levels of access for different population groups and activity purposes. 
Despite the growing adoption of accessibility as a transportation and land use planning goal 
(Levine et al., 2012), time-of-day variations in public transit accessibility have not been 
addressed extensively. This research addresses this gap through the computation of time-
dependent origin-destination travel times and the development of metrics, graphs and maps to 
assess spatiotemporal variations in public transit accessibility.  

Public transit accessibility has been extensively studied from the perspectives of station 
access (Murray et al., 1998; O'Neill, Ramsey and Chou, 1992; Moniruzzaman and Páez, 2012), 
average service frequency (Rood and Sprowls, 1998; Henk and Hubbard, 1996; Ryus et al., 
2000; Hunter-Zaworski, 2003; Drew and Rowe, 2010; Al Mamun and Lownes, 2011) and origin-
destination travel times (O'Sullivan, Morrison and Shearer, 2000; Lei and Church, 2010). These 
can all be considered static measures of access, since the score for a particular location does not 
vary temporally. Aside from a few exceptions (Lei, Chen and Goulias, 2012; Polzin, Pendyala 
and Navari, 2002; Ryus et al., 2000), very few dynamic measures of accessibility have been put 
forward by the research community.  

Time-dependent travel times have been of interest to transportation scientists for two 
main reasons: traffic assignment (Ichoua, Gendreau and Potvin, 2003; Hill and Benton, 1992; 
Haghani and Jung, 2005) and the estimation of demand using flow matrices (Willumsen, 1984; 
Wong and Tong, 1998; Ashok and Ben-Akiva, 2000). Wong and Tong (1998) conducted a 
limited study of transit travel time variability that only considered travel between stations on the 
Hong Kong Mass Transit Rail network and therefore ignored ingress and egress times, and 
transfers between walking, bus and rail modes. Few studies of time-dependent travel times have 
been applied in an accessibility setting. 

Works by Lei, Chen and Goulias (2012) and Owen and Levinson (2014) represent the 
closest predecessors of our research method. In Lei et al.’s paper, public transit travel times are 
used to measure accessibility from census block centroids to sets of activity locations within 
predefined travel-time buffers. The analysis compares public transit and automobile-based 
accessibility during morning and evening peak periods. Owen and Levinson calculate continuous 
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accessibility measures between census blocks in an effort to explain commuter mode choice. The 
premise behind their work is that fixed-time accessibility measures do not provide enough 
information about the accessibility between locations over time.  

Our study departs from these by calculating and analyzing public transit travel times from 
all census block centroids at all times of the day in an attempt to investigate temporal variability 
in supermarket access. The next section briefly introduces the reader to the food desert literature. 
Following that, we describe the methods and datasets used to calculate and assess accessibility to 
supermarkets. This is followed by a discussion of the results and conclusions.  

3.3 CASE STUDY – FOOD DESERTS – NEED FOR TIME-VARYING 
MEASUREMENTS 

One facet of urban accessibility that has garnered attention from a diverse set of stakeholders is 
that of spatial access to stores that sell healthy and affordable food options, like supermarkets or 
full-service grocery stores. Neighborhoods with low spatial and economic access to such stores 
are commonly referred to as “food deserts” (Larsen and Gilliland, 2008; Jiao et al., 2012; USDA, 
2014), a term which relies heavily on the inherently spatial concept of a “desert” and implies the 
region is devoid of nutritious food options for its residents. A thorough review of research 
exploring the socioeconomic and spatial drivers and outcomes of food deserts can be found in 
Walker et al. (2010). Generally, food deserts are defined by identifying regions that have a large 
percentage of low-income residents and are spatially distant from affordable food stores with a 
wide selection of nutritious options (USDA, 2014). While food stores that carry nutritious 
options can include vendors as diverse as large format supermarkets, corner stores and mobile 
food trucks, large grocery stores and supermarkets are commonly used as proxies for healthy 
food stores, as they consistently stock reasonably priced and high-quality nutritious foods (Block 
and Kouba, 2006).  Because of this, as well as the fact that spatial access is a prerequisite for 
purchasing and consuming healthy foods, this research focuses on spatial access to large grocery 
stores and supermarkets. Over the past decade, geographers (Wrigley et al., 2003; Smoyer-Tomic 
et al., 2006; Apparicio et al., 2007; Páez et al., 2010) and public health academics (Cummins and 
Macintyre, 2002), governments (Boyce and Treering, 2012; Chicago, 2013), and media 
institutions (Barclay, 2013; Ramsey, 2011; Kolata, 2012) have explored the phenomenon of food 
deserts and found their existence to be the result of complex social and structural processes with 
real public health consequences (Moore et al., 2008; McKinnon et al., 2009). While results have 
been mixed (Holsten, 2009; An and Sturm, 2012), some research points to residents residing in 
food deserts to be at risk of maintaining a less nutritious diet (Holsten, 2009), which can in turn 
lead to higher rates of common, but preventable, chronic illnesses like obesity, diabetes and 
some cancers (Bazzano et al., 2002; He et al., 2004; Higdon et al., 2007). 

Recent research has documented the importance of creating more nuanced measures of 
the food environment by taking into account the spatiotemporal dynamics of urban life. For 
example, Widener et al. (2013) and Burgoine and Monsivais (2013) demonstrate how everyday-
commuting patterns can result in different, and sometimes improved, accessibility outcomes than 
measures that only account for residents’ home locations. While these works demonstrate the 
importance of accounting for the dynamic lived spaces of residents when deriving accessibility 
scores, they do not adequately account for the differences incurred by the use of various modes 
of transportation.  
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Of particular interest is the level of spatial access transit-dependent riders have to healthy 
food options, though limited research is available on the topic. Burgoine and Monsivais (2013) 
do consider the potential of transit riders accessing food vendors during their walk to and from 
bus stops, but neglect to account for opportunities that might be available along the bus route. 
Fuller, Cummins and Matthews (2013) explored whether transportation mode to a resident’s 
primary food store moderates the relationship between distance to the store and fruit and 
vegetable consumption. Their models found no relationship to exist. Lastly, Widener et al. 
(2014) demonstrate that many transit commuters have increased spatiotemporal access to healthy 
food vendors when accounting for their daily trip to and from work and a limited time budget. 

While these papers establish a baseline from which to examine spatial access to healthy 
food for transit riders, they all neglect one of the most important limitations of traveling via 
transit: variability in spatial access dependent on the time of departure. Given this variability, it 
is possible that certain regions have acceptable access to healthy food stores via transit only 
during select periods. Highly variable transit travel times make shopping by public transit nearly 
impossible for a consumer who is trying to juggle work, child care, and other demands on his or 
her time — no matter what the average travel time may be. And low-frequency service could 
discourage residents from shopping at these healthier food vendors and result in grocery 
shopping taking place at closer, less healthy food stores like convenience markets (Hendrickson, 
Smith and Eikenberry, 2006).  

This research directly addresses this issue by examining how often residents of 
Cincinnati, Ohio, have access to supermarkets within a predetermined time threshold via transit. 
By considering the variability of access over time, results show where and when spatial access to 
healthy food is an issue. 

3.4 METHOD 

Our method is comprised of three stages: travel time estimation, accessibility metrification and 
statistical analysis. In the first stage, public transit travel times are estimated between all census 
block centroids in the city of Cincinnati and the 10 closest supermarkets in the Cincinnati 
metropolitan area. In the second stage, these travel times are converted into measurements of 
accessibility and temporal variability. Finally, in the third stage, the measurements are used to 
assess socioeconomic disparities in accessibility across different populations residing in 
Cincinnati. 
 
3.4.1 Data 

Our analysis relies on transit and walking network data, demographics and food retailers. Transit 
stops, routes and schedules used in this analysis are obtained as General Transit Feed 
Specification (GTFS) datasets from the Southwest Ohio Regional Transit Authority (SORTA) 
and the Transit Authority of Northern Kentucky (TANK).  The pedestrian network is 
characterized using street data from OpenStreetMap. Census blocks within the Cincinnati city 
limits from the 2010 Census are used as the demand locations, and we obtain 2010 Census 
attribute data for blocks and block groups from the National Historical Geographic Information 
System (Minnesota Population Center, 2011). For our network analysis, spatial representation of 
census blocks is based on centroids snapped to nearest street features. 

Supermarket address data is acquired from the Orbis Business directory (Orbis) by 
selecting all businesses with the North American Industry Classification System code 445110 
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(Supermarkets and Other Grocery [except Convenience] Stores), more than 15 employees, and 
that are within one of the nine counties immediately surrounding Cincinnati (Ohio: Hamilton, 
Butler, Warren and Clermont counties; Kentucky: Boone, Kenton and Campbell counties; and 
Indiana: Dearborn and Franklin counties). This query results in a list of 175 stores. A number of 
stores are removed after checking their websites or calling their provided phone number, as 
many do not fit the assumed characteristics of a supermarket (e.g., having a wide variety of fresh 
produce and reasonable costs). These stores were generally gas stations or businesses related to 
the grocery industry, but not food vendors. Finally, the addresses are geocoded in ArcGIS 10.1 
and their locations double-checked using Google Maps, resulting in a total of 117 supermarket 
locations. A conservative, manual procedure was used to remove 19 spatially outlying 
supermarkets, resulting in a set of 98 supermarkets for analytical use. 

The four maps in Figure 3.1 depict the spatial extent of our study area, the locations of 
supermarkets, the intensity of transit level of service (in Figure 3.1a), and the spatial distributions 
of Black, older adults and impoverished populations (in Figure 3.1b-d). Cincinnati is home to a 
large, segregated community of African-Americans that also tends to reside in high poverty and 
low-income neighborhoods. The trips-per-hour map (Figure 1a) is created using the prototype 
BetterBusBuffers tool developed by Melinda Morang at Esri3. The map shows 10-minute walk 
distance buffers around transit stops, color-coded by the average number of unique transit trips 
per hour available at each location between 6 a.m. and 10 p.m.  If multiple stops are reachable 
from a given area, trips visiting all reachable stops are considered. The map does not provide any 
information about the destinations of the available trips, simply their frequency. This level of 
service indicator is tabulated using the GTFS and walking network datasets. Figures 1b and 1d 
illustrate clustering and co-location of higher-percent Black and impoverished regions. Finally, 
hotspots of older adult population are identifiable in Figure 3.1c, but compared to the other 
demographic variables explored, the distribution of the older adult population is far more even. 
 

                                                 
3 All of the tools used in this research to integrate GTFS data with ArcGIS Network Analyst are available for 
download at http://www.transit.melindamorang.com. 

http://www.transit.melindamorang.com/
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Figure 3.8 Maps of Cincinnati Depicting Supermarket Locations and a) Transit Frequency of Service, b) Distribution of the Black Population, c Distribution of 

the Older Adult Population, and d) Distribution of Households Living in Poverty
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3.4.2 Travel Time Estimation 

We calculate the walking/transit travel time between each census block-supermarket pair using 
the Network Analyst OD Cost Matrix solver in ArcGIS 10.2, which uses Dijkstra’s algorithm to 
find the shortest path through the network. We use the prototype Add GTFS to a Network 
Dataset tools recently developed by Esri’s Network Analyst team to combine GTFS transit 
datasets with street data into an ArcGIS network dataset. We use the resulting multimodal 
network dataset to calculate transit trips through the network at specific times of day. 

In setting up our network dataset, we assume an ingress, egress and transfer walking 
speed of 3 mph. We apply a delay of 0.3 minutes for transitions between streets and transit lines 
(to represent boarding a transit vehicle), and a delay of 0.1 minutes for transitions from transit 
lines to streets (to represent alighting). We also create a pedestrian restriction to prevent foot 
travel on limited-access highways and highway ramps. 

To calculate the travel time along transit lines, our network dataset uses the 
TransitEvaluator from the Add GTFS to a Network Dataset tools. Each time a transit line in the 
network is queried by the OD Cost Matrix solver, the TransitEvaluator determines the travel time 
across that transit line by looking up the available transit trips in the GTFS schedules at the 
appropriate time of day and summing the wait time for the trip plus the ride time from the current 
stop to the next. 

The total travel time between a census block and a supermarket is the time it would take 
to travel the optimal path through the network at a particular time of day.  A travel time of 30 
minutes could indicate 30 minutes of walking, 30 minutes of riding on transit, or any 
combination of walking, waiting and riding that adds up to 30 minutes. The optimization 
algorithm does not limit the pedestrian’s walking time, the number of transfers between transit 
lines, or the fare paid. 

Because the travel time between origin-destination pairs changes throughout the day, we 
calculate the travel time matrix for every minute of the day.  In order to reduce computation 
time, we only calculate the travel time for the 10 closest supermarkets to each block at each time 
of day. We use a python script to increment the start time and save the results, and we use 
Monday to represent a typical weekday. According to a national study, some 153 million grocery 
shopping trips take place every week from Monday to Friday across the United States 
(Goodman, 2008). This is compared to 74 million trips on the weekends. Thus, while 
investigating access using a Monday is not exhaustive, the analysis does represent the transit 
situation for approximately two thirds of all shopping trips.  

 
3.4.3 Accessibility Metrification 

Next, we describe how we convert travel time matrices into measurements of accessibility. 
Considering the eventual goal of describing variability in accessibility throughout the day, we 
make use of very simple measurements of accessibility for each time of day, and then analyze 
how these measurements fluctuate over the course of the day.  

It is convenient to introduce some notation. Let 𝑇𝑇𝑖𝑖,𝑚𝑚,𝑘𝑘 be the estimated transit travel time 
from block centroid 𝑖𝑖, at departure time 𝑚𝑚 to the 𝑘𝑘th closest supermarket (measured in minutes 
and where the ranking of supermarket proximity is specific to departure time). As previously 
stated, we compute 𝑇𝑇𝑖𝑖,𝑚𝑚,𝑘𝑘 for all census blocks, at every minute of the day, to the closest 10 
supermarkets. Despite storing the travel times in an indexed table, it is helpful to think of 𝑻𝑻 as a 
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three-dimensional array, indexed by 𝑖𝑖, 𝑚𝑚, and 𝑘𝑘. In this way, cross-sections of the array can be 
used to measure, graph and map spatiotemporal patterns in supermarket accessibility. For 
example, in Figure 3.2, we fix a specific origin and destination and chart 𝑇𝑇𝑖𝑖,:,𝑘𝑘 versus time-of-
day, 𝑚𝑚. The resulting graph demonstrates how travel times from origin to destination can 
fluctuate over time depending on the frequency of bus service and level of synchronization 
between bus routes at transfer locations. The graph directly illustrates how “single-point” 
measures of transit-based accessibility are likely not representative of true levels of access. We 
see that travel times fluctuate between 23 minutes and 57 minutes, depending on the availability 
and timing of bus services. Even within a narrow window of 7-9 a.m., during peak service hours, 
we observe a range of nearly 30 minutes between the maximum and minimum required travel 
time.  It is this variability in travel times that directly leads to variability in accessibility. 

 
Figure 3.9 Variation in Public Transit Travel Time Between Two Locations Across a 24-hour Period 

 
Moving from travel time estimates to measures of supermarket accessibility is quite 

straightforward. We use several easily interpretable summary statistics of travel times to measure 
access. First, for the closest 𝐾𝐾 supermarkets, we define the average and standard deviation of 
travel time for each census block across the time period of 6 a.m.-10 p.m. We believe this 
window suitably captures the best case scenario of when supermarkets have the highest 
probability of being open to the shopper. 
Let 𝜇𝜇𝑖𝑖,𝑚𝑚

𝐾𝐾 = ∑ 𝑇𝑇𝑖𝑖,𝑚𝑚,𝑘𝑘𝑘𝑘
𝐾𝐾

 for 𝑘𝑘 = 1. . 𝐾𝐾 be the average travel time to the closest 𝐾𝐾 supermarkets at time 

𝑚𝑚 for census block 𝑖𝑖. Then 𝜇𝜇𝑖𝑖
𝐾𝐾 =

∑ 𝜇𝜇𝑖𝑖,𝑚𝑚
𝐾𝐾

𝑚𝑚

𝑀𝑀
 for 𝑚𝑚 = 1. . 𝑀𝑀 is the average travel time to the closest 𝐾𝐾 

supermarkets from block 𝑖𝑖 across all the minutes 𝑚𝑚 in the specified time window of size 𝑀𝑀. And 

𝜎𝜎𝑖𝑖
𝐾𝐾 = �∑ �𝜇𝜇𝑖𝑖,𝑚𝑚

𝐾𝐾 −𝜇𝜇𝑖𝑖
𝐾𝐾�

2
𝑚𝑚

𝑀𝑀−1
 is the standard deviation of minute-by-minute travel times around the 

average daily travel time. We make extensive use of 𝜇𝜇𝑖𝑖
𝐾𝐾 and 𝜎𝜎𝑖𝑖

𝐾𝐾 in quantifying mean levels of 
accessibility to supermarkets and variations about the mean. We can then describe accessibility 
of a census block along these two dimensions. Table 3.1 illustrates how combinations of average 
travel time and dispersion about the mean lead to different accessibility outcomes. The best case 
scenario is for a block to have low mean travel time and low levels of dispersion. This indicates 
that throughout the day, people have short travel times to supermarkets with little variability. On 
the other hand, high average travel times with low levels of dispersion indicate that a block is 
very poorly connected to supermarkets. Low average with high dispersion indicates a generally 
strong accessibility with some aberration from the mean, while high average with high dispersion 
indicates poor accessibility with occasional peaks in higher access. 
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Table 3.1 Interpretation of Average Travel Time and Dispersion Measures 
 Low 𝜇𝜇 High 𝜇𝜇 
Low 𝜎𝜎 Best Worst 
High 𝜎𝜎 Mostly 

Good 
Mostly 
Bad 

 
In addition to standard summary statistics of central tendency and dispersion, we also use a 
simple indicator variable to determine whether a census block has access to supermarkets within 
a certain time threshold, ℎ.  

 Let 𝐼𝐼𝑖𝑖,𝑚𝑚
𝐾𝐾,ℎ = �1 if 𝑇𝑇𝑖𝑖,𝑚𝑚,𝐾𝐾 ≤ h

0 otherwise
, be a variable indicating whether block 𝑖𝑖 has access to 𝐾𝐾 

supermarkets within h minutes, then 𝑃𝑃𝑖𝑖
𝐾𝐾,20 =

∑ 𝐼𝐼𝑖𝑖,𝑚𝑚
𝐾𝐾,20

𝑚𝑚

𝑀𝑀
 is the percentage of the time window that a 

block has 20-minute access to at least 𝐾𝐾 supermarkets. A score of 𝑃𝑃𝑖𝑖
𝐾𝐾,20 = 1 indicates that block 

𝑖𝑖 has 20-minute access to 𝐾𝐾 supermarkets for the full duration of the time window, whereas a 
score of 0.5 means that the block can only reach 𝐾𝐾 supermarkets within 20 minutes 50% of the 
time. 
 
3.4.4 Statistical Analysis 

Cincinnati is home to a large, segregated community of African-Americans that also tends to 
reside in high poverty and low-income neighborhoods. The aim of the statistical analysis is to 
explore the distribution of the accessibility metrics with particular reference to disparities in 
accessibility between different race, age and income groups. We make use of standard 
exploratory data analysis techniques to uncover any relationships between food accessibility, 
temporal variability, race, age and poverty status. Regression models (not shown) fail to find 
generalized relationships between socioeconomic status and accessibility. This is because both 
high and low socioeconomic status neighborhoods attain both high and low levels of 
accessibility. 
In light of this, the analyses focus on quantifying the number of people in different 
socioeconomic groups attaining different levels of accessibility. This paints a more holistic 
picture of accessibility in general, while identifying pockets of mismatch that must be addressed 
from a policy perspective. 

3.5 RESULTS 

We present results of the accessibility analysis using maps, graphs and statistical analysis. First, 
we explore spatial patterns of daily average travel time to supermarkets, variation in daily access, 
and percent-of-day with 10- and 20-minute access. We believe that these “common sense” 
cutoffs suitably describe good and medium levels of access given the difficulty in carrying 
groceries for longer periods of time. After that, race, age and income disparities are explored 
using a combination of scatterplots and histograms. 

Figure 3.3 depicts travel times to supermarkets in terms of the average and standard 
deviation of travel time to the closest supermarket (shown in 3.3a and 3.3c) and the closest three 
supermarkets (shown in 3.3b and 3.3d). The maps demonstrate that proximity to supermarkets 
results in faster travel times, and those areas with shorter duration travel times consistently also 
have lower standard deviations. We can observe locations that are not spatially proximate to 
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supermarkets but still acquire low travel times due to high levels of transit connectivity. Also, we 
find that shorter travel times extend over longer distances in the center of the city, where the 
street pattern is more rectilinear, in comparison to more suburban locales with less walkable and 
more convoluted street designs.  

Interestingly, we see that those blocks with longer average travel times, while having 
higher standard deviations, vary to strikingly different degrees. For example, the western and 
eastern extensions of blocks along the Ohio River both have long average travel times to 
supermarkets, but those in the west have a high standard deviation while those in the east do not. 
This is a result of commuter-oriented bus routes that service the western blocks with faster but 
infrequent connections to supermarkets. 

When comparing patterns of accessibility for one and three supermarkets, we see that 
accounting for the three closest markets results in much less heterogeneous map patterns. 
Simply, the averaging over three supermarkets smoothes the local accessibility gain to blocks 
within immediate vicinity of a supermarket. We hypothesize that access to three supermarkets, 
rather than just one, better guarantees access to affordable, healthy food due to competitive 
pricing and diversification of product (Pearson et al., 2014). 

Figure 3.4 visualizes variability in travel times using the percent-of-day accessibility 
indicators described previously. In this case, Figure 3.4a and Figure 3.4b depict the percent of 
day that residents can reach one and three supermarkets within a 10-minute journey, while 
Figure 3.4c and Figure 3.4d depict the same measurements using a 20-minute threshold. In both 
cases, we only consider the time period between 6 a.m. and 10 p.m. when formulating the 
denominator of the percentages. There are several observations to be made. First, in Figure 3.4a, 
we see that only those blocks within walking distance to supermarkets can attain 100% access. 
Also, the level of accessibility drop-offs very abruptly; those blocks having partial transit-based, 
10-minute access to a single supermarket only have that for 0-20% of the day. This, in 
combination with the sea of 0% access blocks across the study area, indicates a very low level of 
opportunity for transit-based grocery shopping beyond those places that are walkable. As before, 
the accessibility zones spreading out from supermarkets are larger in the downtown regions with 
more direct walkable routes.   

While very few blocks attain any semblance of regular access to three supermarkets 
within 10 minutes (shown in Figure 3.4b), the accessibility landscape appears to be more 
promising when considering a 20-minute buffer shown in Figure 3.4c and Figure 3.4d. In 
contrast to the 10-minute buffer, percent-of-day figures drop off smoothly away from 100% 
zones, especially in areas along transit corridors that attain 40-80% access to one supermarket. 
Of course, this visual depiction of higher accessibility is dampened by the understanding that a 
20-minute trip to a supermarket (plus a return trip) is not desirable, but perhaps feasible, for 
many individual shoppers. 
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Figure 3.10 Mean Travel Time to a) The Closest Supermarket; b) The Closest Three Supermarkets and Standard Deviation of Travel Time to; c) The Closest 

Supermarket; and d) The Closest Three Supermarkets 
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Figure 3.4 Percent of Day with Access to One and Three Supermarkets within 10 Minutes (a and b) and 20 Minutes (c and d), Respectively 
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Figure 3.5 depicts disparities in access to supermarkets between White and Black people. 
Each subplot contains a scatterplot of average versus standard deviation of travel time to the 
nearest supermarket. The subplots contain census blocks with increasing concentration of the 
African-American population. The red iso-lines mark different values of the coefficient of 
variation �CV = 𝜎𝜎

𝜇𝜇
� as labeled in the bottom-left plot.  

In general, most of the blocks across all four plots are concentrated to the left of 30 
minutes and below the CV=0.3 line.  This indicates quite good access overall when considering 
average travel times over the course of the day (6 a.m.-10 p.m. in this case). Focusing attention 
on the top-left plot, we observe the existence of several dozen non-Black blocks with mean travel 
times in excess of 60 minutes. Contrastingly, there is only one block amongst the most 
concentrated Black neighborhoods with an average travel time greater than 42 minutes (FIPS 
390610104001013 with total population of 13 people).  The longer travel time blocks identified 
in the top-left plot can be readily classified into high and low levels of dispersion. The blocks 
with long travel times and low dispersion are much worse off than those with high levels of 
dispersion since shorter duration transit trips to the supermarket in the latter group may be 
possible.  
 

 
Figure 3.5 Scattergrams of Mean Travel Time to Closest Supermarket versus Standard Deviation of Travel Time 
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Figures 3.6-3.8 depict the social disparities in supermarket access by race, age and 
income. Each histogram plots the percentage of the population in each social grouping (vertical 
axes) that attains 20-minute access to its nearest supermarket for different percentages of the day 
(horizontal axes; using 6 a.m.-10 p.m. as the denominator). Accordingly, Figure 3.6 indicates 
that roughly 41% of the White population and 36% of the Black population can reach a 
supermarket within a 20-minute transit journey at all times of the day. Interestingly, Black 
people have lower representation in the 0% access category, 7% versus 10% for White people, 
but are more likely to reside in blocks with partial access to supermarkets. This indicates that the 
Black population is subjected to more uncertainty with respect to when they might have access to 
supermarkets when compared to the White population.  

Figure 3.7 indicates that older adults are more likely to reside in neighborhoods with less 
than 20% access, and less likely to reside in blocks with 100% access. In reality, if we were to 
relax the constant walking speed assumption embedded in our travel time calculations, we would 
likely find even lower levels of access for the older adults than those observed. 

Finally, we repeat the analysis for those living below the poverty line in Figure 3.8. We 
use five-year 2012 American Community Survey data at the block-group level of aggregation to 
report on poverty. That is the reason for the general shape of the poverty histogram to be so 
different to the rest, which are generated using block-level decennial census counts. For this 
analysis, block-level accessibility scores are aggregated to the block group using a population-
weighted average. The histogram indicates that those living below the poverty line are actually 
more likely to be within higher-accessibility block groups. Despite this, more than 40% of 
below-poverty individuals can only reach a supermarket within 20 minutes during 40% or less of 
the day. So, despite the absence of gross disparities between rich and poor, overall levels of 
transit-based accessibility for the poor are quite low except for those living within walking 
distance of markets (approximately 25% of those in poverty). 

 
Figure 3.11 Percent of Day with 20-Minute Access to Supermarkets by Race 
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Figure 3.12 Percent of Day with 20-Minute Access to Supermarkets by Age 

 

 
Figure 3.13 Percent of Day with 20-Minute Access to Supermarkets by Poverty Status 
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evidence of discrimination, a comparison of automobile ownership with transit-based access to 
supermarkets can more precisely identify the neighborhoods in the city where poor transit-based 
access is most likely to cause poor accessibility to healthy foods.  
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percentage of households with zero vehicles at the census-tract level of aggregation. We focus on 
zero-vehicle households because we assume that households with at least one vehicle will tend to 
use that vehicle for grocery trips. A selection of census tracts that approximately covers 
Cincinnati is made for this analysis (n=119). According to this data, there are 30,321 (20.8%) 
zero-vehicle households in Cincinnati. The percentage of zero-vehicle households per census 
tract is spatially concentrated (Moran’s I of 0.47 using row-standardized queen contiguity), with 
a map pattern that closely resembled that for poverty seen in Figure 1d. 
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Figure 3.9 depicts the spatial distribution of zero-vehicle households (each dot represents 
40 households) overlaid on the block-level supermarket accessibility scores. In Figures 3.9a and 
3.9b, the blocks are colored according to the percentage of the day (6 a.m.-10 p.m.) that at least 
one supermarket is reachable within a 10- or 20-minute trip, respectively. Evidently, very few 
zero-vehicle households have consistent 10-minute transit access to a single supermarket. The 
case for 20-minute access is slightly more optimistic, with large numbers of downtown, zero-
vehicle households attaining regular access. Still, even for the 20-minute threshold, several low-
access suburban neighborhoods with large numbers of zero-vehicle households can be identified. 
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Figure 3.14: Zero-Vehicle Households and Transit-Based Access to Supermarkets 
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3.6 CONCLUSIONS 

In this study we have put forward new techniques for measuring transit-based accessibility to 
destinations. In particular, we demonstrate the degree to which schedule-based, fixed-route 
transit systems provide time-varying levels of accessibility to supermarkets in Cincinnati, Ohio. 
We also explore disparities in accessibility and accessibility variations among race, age and 
income groups. Several conclusions regarding the science of accessibility, and how it pertains to 
food shopping, can be drawn from the analysis. 

First, the research clearly identifies that access to destinations via public transit is 
characterized by a high degree of variability over time. Moreover, this variability depends on the 
distance from origin to destination, the existence of transit options, and the headways along 
transit routes. Not only does this research suggest the inadequacy of using a single time of day 
for transit-based accessibility research, the methods put forward also paint a more complete 
picture of the degree to which individuals can reach their destinations via transit. It is therefore a 
more nuanced and valid measure of accessibility. 

Second, in terms of the specific case study findings, the continuous accessibility 
measures identify spatial, temporal and demographic trends in accessing supermarkets via 
transit. The analysis clearly shows that outside of walkable buffers surrounding supermarkets, 
very few people attain consistent access to supermarkets throughout the day. In other words, 
once transit is actually involved in the trip, many Cincinnatians can only reach a supermarket 
within 20 minutes during 20% of the day or less. Thus, despite the potential ability for people to 
align shopping trips with the transit schedule, the degree of flexibility for transit riders to choose 
when they would like to go shopping appears to be severely limited. In a time-crunched modern 
world, scheduling barriers such as these are likely to result in fewer shopping trips being made. 

There are several caveats concerning this methodology that should be addressed in future 
work. First, the method only uses one-way travel times in measuring accessibility. In reality, 
shoppers consider the total travel time when conducting their trip. Second, the measure of travel 
time does not differentiate between different components of a multimodal trip (walk time, wait 
time, transfer time and in-vehicle time). Trips of equal travel time requiring different levels of in-
vehicle vs. walking time are experienced differently by different types of people. For example, 
elderly travelers may find longer in-vehicle travel times suitable in exchange for shorter walking 
times. Third, we do not consider weekend shopping trips, on days when U.S. transit agencies 
typically run at reduced levels of service. An interesting follow-up study would be to compare 
accessibility between weekdays and weekends.  

The results of the demographic analysis are mixed. People identifying as Black or 
African-American and older adults tend to have lower levels of consistent access to supermarkets 
throughout the day. Furthermore, there exist several predominantly White neighborhoods with 
terribly low levels of access to supermarkets throughout the entire day, while no such 
predominantly Black neighborhoods were found. In terms of income, those below the poverty 
line actually have slightly higher levels of transit-based access compared to those not living in 
poverty. However, if should be cautioned that 40% of the population living in poverty has less 
than 40% access to a supermarket within 20 minutes. So, despite there being little inequality 
between income groups, levels of access are still very poor among those least likely to own 
automobiles. This conclusion is clearly supported by the vehicle ownership overlays, which 
identify widespread lack of accessibility at the 10-minute threshold, and more concentrated 
pockets of inaccessibility for zero-vehicle households at the 20-minute threshold. If a 10-minute 
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grocery trip is deemed desirable for a policy goal, the abundance of zero-vehicle households not 
attaining this level is quite worrisome; at this level of widespread inaccessibility, policies aimed 
at increasing mobility (such as automobile ownership or taxi vouchers) may provide the most 
benefit given that alternative policies, such as providing more transit routes or increasing the 
density of supermarkets, could not be concentrated in targeted areas. Comparatively, if a 20-
minute travel time is considered sufficient, place-based policies such as transit expansion or 
supermarket development could be targeted in several low-vehicle tracts with poor access. It is 
quite fascinating that the most suitable policy direction clearly hinges on whether 10- or 20-
minute access is deemed sufficient. Thus, more research into the impact of accessibility on food 
shopping behaviors is needed to inform this debate. 
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In addition to the research in this project report, this NITC project funded several collaborations 
that have resulted in academic publications not directly contained herein. Below is a list of 
outputs and their abstracts. 
 
1. Lamers, J., Farber, S., & Habib, K. N. (2016). Accessibility to Community Services in the 

City of Toronto: A Perspective on Social Disadvantage and Homelessness. In Transportation 
Research Board 95th Annual Meeting (No. 16-2863). 

Local governments and non-profit organizations fund and operate many services and 
programs throughout the city including those which are specifically for the benefit of 
homeless, low-income or otherwise socially disadvantaged people. Accessing these services 
can sometimes be difficult, especially for those who do not have access to private 
automobiles. For such transit dependent people, transit accessibility to these services are 
crucial. This research measures the travel time by transit to various community services in 
the City of Toronto from each census tract and homeless shelter as a measure of transit 
accessibility. Each census tract was scored with an index of social disadvantage using four 
characteristics from census data. It was found that access was highest in the old City of 
Toronto due the dense concentration of services and more frequent transit supply. Places in 
the outer parts of the city face concerning levels of inaccessibility to community services. 
However, transit access to community services do not vary across the levels of social 
disadvantage. The travel time matrices generated in this research can serve as a guide for 
policy analysis for future service expansion. 

 
2. Fransen, K., Neutens, T., Farber, S., De Maeyer, P., Deruyter, G., & Witlox, F. (2015). 

Identifying public transport gaps using time-dependent accessibility levels. Journal of 
Transport Geography, 48, 176-187. 

One of the concerns that has aroused much scholarly attention in transport geography lately 
is the extent to which public transport provision enables the less privileged population 
segments, especially those without privately owned motorized vehicles, to participate in 
activities that are deemed normal within the society they live in. This study contributes to this 
line of inquiry by proposing a methodology for identifying public transit gaps, a mismatch 
between the socially driven demand for transit and the supply provided by transit agencies. 
The methodology draws on the latest accomplishments in the field of modeling time-
continuous, schedule-based public transport accessibility. Accessibility levels to key 
destinations are calculated at regular time intervals, and synoptic metrics of these levels over 
various peak and off-peak time windows are computed for weekdays and weekends. As a 
result, a temporally reliable picture of accessibility by public transport is constructed. The 
obtained index of public transport provision is compared to a public transport needs index 
based on the spatial distribution of various socio-demographics, in order to highlight spatial 
mismatches between these two indices. The study area consists of Flanders, which is the 
northern, Dutch-speaking region of Belgium. The results indicate that mainly suburban areas 
are characterized by high public transport gaps. Due to the time-variability of public transport 
frequencies, these gaps differ over time. 
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3. Widener, M. J., Farber, S., Neutens, T., & Horner, M. (2015). Spatiotemporal accessibility to 
supermarkets using public transit: an interaction potential approach in Cincinnati, 
Ohio. Journal of Transport Geography, 42, 72-83. 

Improving nutrition in urban regions involves understanding which neighborhoods and 
populations lack access to stores that sell healthy foods, such as fruits and vegetables. To this 
end, recent work has focused on mapping regions without access to places like supermarkets, 
often terming them ‘food deserts’. Until recently, this work has not considered residents’ 
mobility as facilitated by transportation systems, and even among those that do, few have 
considered alternative forms of transportation, like public transit, opting for automobile-
oriented travel assumptions. This paper analyzes people’s spatio-temporal constraints to 
accessing supermarkets, and focuses on the transit commuting population. Analysis of 
commute data from Cincinnati, Ohio shows there are a significant number of residents that 
have improved access to supermarkets when a grocery shopping trip is made on the way 
home from work, than if they were to depart from their home location. These results extend 
previous work showing relatively few automobile commuting residents have better access to 
supermarkets given their work locations. 
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TRAVEL TIME CUBE DOCUMENTATION  
Instructions to create and analyze travel time cubes using GTFS data and ArcGIS 
Contact: 
Dr. Steve Farber 
University of Toronto Scarborough 
1265 Military Trail, Toronto, ON M1C 1A4, Canada 
(416) 208-5120 
steven.farber@utoronto.ca 
 
Prepared by: 
Liwei Fu 
City of San José 
200 E. Santa Clara St., San José, California, 95113 
folflw@gmail.com   
 

mailto:steven.farber@utoronto.ca
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BRIEF OVERVIEW 

Calculating travel time cubes in ArcGIS requires the following steps which will be 
explained in further detail in this instruction manual: 

1) Remote desktop connection 
2) Create network dataset 
3) Generate origin-destination matrix 
4) Analyze travel time cube 

 
If you wish to create OD matrix from locations that are not directly connected to your street 
files (e.g. census block centroids), start from Part 1, connecting to the remote desktop and 
follow Parts 1-3. It will help you to create connectors between locations and street line 
shapefiles so that travel times from locations to nearest streets can be accurately estimated. 
 
Part 2, creating the network dataset, is heavily based on the instructions for the ArcGIS add-
in toolbox Add GTFS to a Network Dataset. Any user should consult the users’ guide when 
creating their network dataset.  This is also a helpful source of information on how the 
shortest path algorithms function, and how to troubleshoot using GTFS data with the 
network analyst. 
 
If you’ve already created your network dataset, you should connect to the geoprocessing 
server using Step 1, and then skip to Step 3 to generate travel cube.  

  

http://www.arcgis.com/home/item.html?id=0fa52a75d9ba4abcad6b88bb6285fae1
http://transit.melindamorang.com/AddGTFStoND_UsersGuide.pdf
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REMOTE DESKTOP CONNECTION 

In order to use the servers for travel time cube calculation, you need to use the secure remote 
desktop gateway to access farber[1-3].geog.utah.edu servers.  
 
To access the servers from off campus on a Window PC: 
 
1. Launch Remote Desktop Connection. It should be located in Start->All Programs-
>Accessories. Enter the computer's hostname in the Computer field (for example, 
farber1.geog.utah.edu). Enter your username as ADCSBS\u0xxxxxx. 
 
2. Click options below the address window. Go to Advanced. Click on Settings... 
under Connect from anywhere and change the following settings: 
 

a. Select the radio button titled "Use these RD Gateway server settings" 
 

b. Enter server name: csbs-rdg1.csbs.utah.edu 
 
c. Select logon Method: Ask for password (NTLM) 
 
d. Check Bypass RD Gateway Server for local addresses 
 
e. Check Use my RD Gateway credentials for the remote computer. Hit OK to save 

settings. 

3.  Click Connect. 
To access the servers from off campus on a MAC: 
1. Download Microsoft Remote Desktop from the App Store. Note that Remote Desktop 
Connection, commonly installed with Office:Mac 2011, will not work because it doesn’t 
support the appropriate Remote Gateway protocol. 
 
2. Launch Microsoft Remote Desktop. Click Preferences. Change the following settings: 
 

a. Gateway name: csbs-rdg1.csbs.utah.edu 
 

b. Server: csbs-rdg1.csbs.utah.edu 
 

 
c. User name: ADCSBS\U0xxxxxxx 

 

http://farber1.geog.utah.edu/
http://csbs-rdg1.csbs.utah.edu/
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d. Password: Ask user to enter, or leave blank. Click the red X in the upper left of the 
window. Settings should save automatically. 

    
3. In the main Microsoft Remote Desktop Window, click the New button in the upper-left 
corner. In the new window that pops up, change the following settings: 
 

a. Connection name: hostname of remote computer. 
 

b. PC name: FQDN of remote computer (for example: farber1.geog.utah.edu) 
 

c. User name: ADCSBS\U6xxxxxxx 
 

d. Password: Ask user to enter, or leave blank. Again, click the red X to close the 
window. 

    
4. Click Start to initiate a connection. The user will probably see a certificate warning. 
Instruct them to simply click Continue if this appears.  
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CREATE NETWORK DATASET 

1.0 DOWNLOAD AND INSTALL ADD GTFS TO A NETWORK 
DATASET TOOL 

This tool requires to register a GTFS transit evaluator for ArcGIS Network Analyst 
extension. In order to install the evaluator, download Add GTFS to a Network Dataset from 
ArcGIS Online and install it following step 1) in the user’s guide.   
 

1.1 FUNCTIONS 

This toolbox creates a network dataset based on a pedestrian network and General Transit 
Feed Specification (GTFS) package. The major difference between these guidelines, and the 
ones included with the Add GTFS to Network Dataset toolbox is that link connectors 
between locations and the pedestrian network are explicitly created in these steps. This 
means that travel times from locations to street networks are estimated. This is important 
when locations are not geocoded within a quick walking distance of the street network. If 
this is not a concern, the documentation suppled with the Add GTFS to Network Dataset 
toolbox is recommended. 
 

1.2 COMPONENTS 

 The travel cube calculation folder contains the following files and folders: 
Scripts: GenerateConnectors.py, GenerateTransitSchedule.py 
 
Templates Folder: UtahTransit.gdb, GTFS data 
 

1.3 PREPROCESS DATABASE 

Before creating network dataset, area of interest needs first to be determined. The sample 
data uses Salt Lake Valley area. Preprocess database by the following steps: 
 

1. Gather required data (GTFS data, Census Population and Boundary Data, Road Data 
(update roads near transit stops & Origins/Destinations ));  
 

2. Select only BGs within 5 km of transit stops.  
 

3. Select only blocks within these selected BG’s.  
 

http://www.arcgis.com/home/item.html?id=0fa52a75d9ba4abcad6b88bb6285fae1
http://transit.melindamorang.com/AddGTFStoND_UsersGuide.pdf
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4. Generate census block points with population from block polygons.  
 

5. Generate census block group population-weighted mean centroids (Mean Center) to use 
as origins/destinations. 
 

6. From these, select only centroids within 5 km of transit stops.  
 

7. Edit road data for analysis purposes (added missing roads near transit stops and block 
group centroids).  
 

8. Move centroids closer to roads by placing them on populated areas closest to original 
point.  
 

9. Created topology and verified that no “real” dangles were in the study area  
 
 

1.4 GENERATE CONNECTORS 

This script creates connectors from census block group centroids to road network as well as 
stop-street connectors. 
  
Scripts: GenerateConnectors.py 
 
The script uses following input variables:  
 
outFD: Location of file geodatabase where network dataset will be created. It is 
recommended to specify a feature dataset for the purpose of creating network dataset in the 
next steps. 
 
inGTFSdir: Location of GTFS directories. The template uses Utah transit network from 
April 13th, 2014 to August 16th, 2014. GTFS files can be acquired from http://www.gtfs-data-
exchange.com/  
 
OrgDest: Location of census block group centroids feature class as origins and destinations. 
 
origRoad: Transit road network including roads near transit stops and BG centroids. 
 
The script creates following outputs under the select geodatabase directory (outFD):  
 
TransitLines: Line feature class of straight lines between each pair of stops that is directly 
connected by a transit trip. Note that these are not the actual transit routes but merely 
straight lines between transit stops.   

http://www.gtfs-data-exchange.com/
http://www.gtfs-data-exchange.com/
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Stops_Snapped2Streets: Point feature class of GTFS transit stops snapped to the closest 
street lines.  
 
Connectors_Stops2Streets: Lines feature class of connectors between transit stops and the 
corresponding snapped-to-street points. 
 
Streets_UseThisOne: A copy of the street lines feature that selected as input with vertices 
at the locations of snapped-to-street points. This is the streets feature class you should use in 
your network dataset instead of your original streets feature class.   
 
GTFS.sql: SQL database containing processed GTFS data. No further process need to be 
made to this file, but don’t delete it because it will be used by the network dataset during 
analysis. 
 

1.5 CREATE NETWORK DATASET 

After creation of street lines and connector, you need to create network dataset from the 
previous output feature dataset (outFD). See Create your network dataset using correct connectivity 
groups for further instructions.   
 

1.6 GENERATE TRANSIT SCHEDULE TABLES 

This script generates file geodatabase tables of GTFS schedule information in the correct 
format for use in the GTFS evaluator in the network dataset. It also retrieves the network 
dataset's EIDs for the transit lines features and adds the EIDs to the transit schedule table 
used in the GTFS evaluator.  The network dataset must be built prior to running this tool, 
and the tool must be re-run every time the network dataset is rebuilt in order to update the 
EID values. 

Scripts: GenerateTransitSchecule.py 
The script uses following input variables:  

inNetworkDataset: Network dataset created in the last step containing TransitLines 
scriptsDir: Location of the scripts 
The script creates following outputs under the geodatabase directory containing selected 
network dataset . Note that it should be the same FGDB containing “GTFS.sql”: 
 
TransitScheduleTable: Start time and end time for transit lines. 
 
TransitSchedule_Calendar: Dates for service IDs using a weekly schedule. Specify when 
service starts and ends, as well as days of the week where service is available. 
 

http://transit.melindamorang.com/AddGTFStoND_UsersGuide.pdf
http://transit.melindamorang.com/AddGTFStoND_UsersGuide.pdf
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TransitSchedule_CalendarExceptions: Exceptions for the service IDs defined in the 
calendar.txt file. 
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GENERATE ORIGIN-DESTINATION MATRIX 

This toolbox creates travel time cubes using network dataset created in the last step. It 
estimates shortest path travel time from location to location (census block group centroid) 
making use of a public transit schedule. And it calculates OD cost matrix for every minute 
of a day.  
 
Before using this tool, make sure the GTFS transit evaluator file is registered on the 
machine. If not, follow step 1.0 in Create network dataset to install it. 
 
This script automates the travel cube calculation process by looping OD matrix calculation 
over every minute. It further stores the results in HDF5 files. Every dataset in a file 
represents an OD matrix of a single minute. The X axis represents origins, while Y axis 
represents destinations. The sequence of origins and destinations in the matrix will match 
the uid (ie. Object ID) of input points. 
 
The multiprocessing Python module is used to distribute workload to multiple processes on 
a server. Each CPU core processes network dataset individually and output a HDF5 file. The 
start time of each cube is defined by data given to worker function, and the size of travel 
cube is defined within the worker function: 
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import multiprocessing 
from multiprocessing import Process 
import sys 
 
# Define worker function to calculate travel time cube at given time 
def ((Hour, Minute)): CalculateTravelCube
 … 
 #Calculate 30 minute at a time 
     LoopTime = 30 
 … 
 
if __name__ == '__main__': 

#Use multiprocessing module to 30 minute travel cube on each processor 
#Create a pool class to run the job 

     pool = multiprocessing.Pool() 
     print "Start to run CalculateTravelCube" 
     #Define the number of jobs. We use 16 here, each maps to a processor, calculating total 8 hours 
of travel cube. Job is defined as [hour, minute] 
     data = ([0, 0], [0, 30], [1, 0], [1, 30], [2, 0], [2, 30], [3, 0], [3, 30], [4, 0], [4, 30], [5, 0], [5, 30], [6, 0], 
[6, 30], [7, 0], [7, 30]) 
     #Synchronize the main process with the job processes 
     pool.map(CalculateTravelCube, data) 
     pool.close() 
     print "Done with CalculateTravelCube" 
     #End main   
If you wish to calculate for a different time period, change data and LoopTime accordingly. 
If the calculation amount is relatively small, you can choose not to use the multiprocessing 
module and run CalculateTravelCube function directly.    
 
Scripts: GenerateODMatrix.py 
 
The script uses following input variables:  
 
InNetworkDataset: Network dataset created after running last steps. 
 
OrgDest: Point layer to be analyzed as origins and destinations. If you wish to calculate OD 
matrix from different origins and destinations, define and add then separately after creating 
OD matrix (in arcpy.AddLocations_na after arcpy.MakeODCostMatrixLayer_na) . 
 
Date: Assign travel date to be analyzed. Note that data must be selected within the selected 
GTFS package time period 
 
matrix_size: number of census block group centroids 
 
OutFile: Directory of output travel time cubes. 



76 
 

 
Be sure to match census block group centroid uid name in arcpy.AddLocations_na function, 
here we use ‘BGGEOID’ 
 
The script creates a series of HDF5 travel time cubes. Each half hour is calculated 
simultaneously and stores as a HDF5 file, containing OD matrix of 30 minutes.  For 
example, the travel time cube for the first half hour of a day will be stored as 
“TravelcubeUT14_000AM_30.h5py”.  
 
The sample script makes use of multiprocessing function (multiprocessing.py) in order to 
speed up calculation process. In the main function, we mapped a total of 16 cores, with each 
CPU calculate travel cube of half an hour. As a result, it creates travel cube of 8 hours at a 
time. With all three servers full functioning, the 24 hour cube can be calculated at the same 
time by assigning different time periods to different servers. This function cannot print 
outputs interactively in python shell, so a log file is created in the directory of the scripts to 
print out the progresses of each processor. For example, the output of the processor that 
calculates the first half hour is stored in “\Log\out-00.log”. 
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TRAVEL TIME CUBE ANALYSIS TOOL 

 

1.1 FUNCTIONS 

This toolbox reads and analyzes the travel time cube, creates summary statistic information, 
Fourier transform results of travel frequencies, and accessibility analysis.  

1.2 COMPONENTS 

 The travel cube analysis folder contains the following files and folders: 
Scripts: TravelCubeIO.py, CalStatistics.py, Fourier.py 
 
Templates Folder: TravelCube, LEHD 
 

1.3 READ AND WRITE TRAVEL CUBE  

This script reads the whole travel time cube into memory. A travel cube with 1197 
origins/destinations takes 16GB memory and will function quickly with the capacity of the 
server (32GB memory). As the cubes are stored in a total of 48 files, it takes a great amount 
of time for HDF5 file I/O. This script also saves the travel time cube into one single file and 
provides I/O for that file. 
  
Scripts: TravelCubeIO.py, CalStatistics.py, Fourier.py 
 
The script uses following input variables:  
 
Filepath: Location of HDF5 files. It is defined to match the names of each travel time cube. 
 
msize: Size of input matrix length to store travel cube, which is equal to the number of O/D 
locations. 
 
outfile: Location of a single hdf5 travel cube file 
 
The script creates following outputs under the select directory (outfile):  
 
TravelCube.hdf5: A single file containing OD matrix of every minute of a day, the size of 
this file is 1440*n*n, in which n represent number of locations in the OD matrix.  The first 
axis (axis = 0) indexes minute of a day, the second axis (axis = 1) indexes destinations, and 
the third axis (axis = 1) indexes origins.  
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1.4 GENERATE SUMMARY STATISTICS 

This script calculates summary statistics of the travel time cube, including mean, standard 
deviation, and coefficient of variance.  
  
Scripts: CalStatistics.py 
 
The script makes use of the 3D travel cube matrix that is already read into memory in the 
last step (TravelCube). It uses the following input variable: 
 
msize: Size of input matrix length to store travel cube, which is equal to the number of O/D 
locations. 
 
The script outputs the mean, std. and CV of the entire cube (ie. mean = 996.72).  It also 
creates the following outputs under the script directory: 
 
MinuteMean.txt: A list of average travel time for every minute of a day. The length should 
equal to number of minutes (1440).  
 
Org_mean.txt: A list of average travel time from every origin to all destinations. The length 
should equal to number of locations in file.  
 
Dest_mean.txt: A list of average travel time from all origins to every destination. The 
length should equal to number of locations in file.  
 
Org_std.txt: A list of travel time std. from every origin to all destinations. The length 
should equal to number of locations in file.  
 
Dest_std.txt: A list of travel time std. from all origins to every destination. The length 
should equal to number of locations in file.  
 
MinCV.txt: A list of travel time CV for every minute of a day. The length should equal to 
number of minutes (1440). 
 
CVOrg.txt: A list of travel time CV from every origin to all destinations. The length should 
equal to number of locations in file. 
 
CVDest.txt:  A list of travel time CV from all origins to every destination. The length 
should equal to number of locations in file. 
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1.5 FOURIER TRANSFORM 

This script calculates average travel cycle as well as std. of travel cycle using Fourier 
Transform. As the travel frequency at night time with no or little transit services will be 
approaching to 0, with cycling approaching to infinite, this script uses travel time at daytime 
from 6am to 7pm (t = [360:1140]).   
  
Scripts: Fourier.py 
 
The script makes use of the 3D travel cube matrix that is already read into memory in the 
last step (TravelCube). It uses the following input variables: 
 
msize: Size of input matrix length to store travel cube, which is equal to the number of O/D 
locations. 
 
threshold: The threshold number to filter peak frequencies. The default is set as 0.75, 
suggesting that the amount of frequencies that is larger than 75% the maximum frequency 
amount is considered as a peak frequency and will be stored in the result dictionary.  
 
The script outputs the mean, std. and CV of the entire cube (ie. mean = 996.72).  It also 
creates the following outputs under the script directory: 
 
FourierDict: A dictionary containing frequencies for every OD pair. The key is the OD 
pair, while the values are the detected frequencies of the OD pair. For example, the travel 
cycle from point 0 to point 1 is:  FourierDict(1, 0) = 30, 60, 180,…  
 
FreMeanUT14: A matrix of average travel cycle for every OD pair.  
 
FreStdUT14: A matrix of travel cycle std. for every OD pair.  
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